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Macromolecular theory of solvation and structure in mixtures of colloids and polymers
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The structural and thermodynamic properties of mixtures of colloidal spheres and nonadsorbing polymer
chains are studied within a general two-component macromolecular liquid state approach applicable for all size
asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concen-
trated, are presented and compared to field theory and to models that replace polymer coils with spheres.
Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling
laws where available, important differences from “effective sphere” approaches are found for large polymer
sizes or semidilute concentrations.
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[. INTRODUCTION polymer correlations that are not contained in the mentioned
approaches. Also, for small spherical surfactant mic¢2d$

Mixtures of dispersed spherical particles and nonadsorbthe dependence of phase separation on polymer size is oppo-
ing polymers may be viewed as a model system for a widesite to predictions of colloid approachg$,5]. There are at
variety of materials encountered in food products, biologicaleast two reasons for these discrepancies. First, polymer coils
systems, or technological applications. In these systems, thtean deform close to particles and can thus fit into void spaces
“depletion attraction” is always present because it has amore effectively than spheres. Second, for higher polymer
purely entropic and universal origin. Its consequences cagoncentrations the coils start to overlap and the relevant
most clearly be studied in mixtures of colloidal hard spheregolymer correlation length crosses over from the coil radius
and polymer chains made up of hard units where only thd0 the size of a mesh in the formed transient network. Both
entropic consideration of the packing of particles restricteceffects are important if the polymer coils are not negligibly
by steric or excluded volume constraints enters. small compared to the particles and both are neglected in the

Because of the fundamental nature of the depletion attracdescribed theoretical approaches. The effects have long been
tion, it has been studied theoretically since the pioneeringinderstood from field-theoretic approaches to polymers in
work of Asakura and Oosawd] and Vrij [2]. Moreover, its the limit of dilute colloidal particles. The deformability of
effect on the phase behavior had been observed much earligte polymer coils affects the depletion layer of polymer seg-
[3] The phase diagram of Co”oid_po'ymer mixtures has beeﬁnents close to particleS, the reSUlting insertion free energies,
constructed using the Asakura-Oosawa pair potential in aAnd the induced colloid pair interactiof85—29. For semi-
effective one-component thermodynamic perturbation calcudilute polymer suspensions the depletion layer and the in-
lation [4], within a two-component dilute polymer free vol- duced interactions were obtained for both large and small
ume approach5], and also with computer simulatiof8, 7], colloids[27-33. Yet, except for in a highly idealized mean-
the latter based on specific models originating in REff<2]. field thermodynamic perturbation calculation of hard spheres
The Asakura-Oosawa model consists of replacing the polyby Schaink and Smif34], polymer field-theoretical ap-
mer coils with effective spheres that can freely interpenetraté?roaCheS have not been extended to finite colloid concentra-
each other but not the colloidal spheres. This model has bedlPns.
further treated by liquid state theof], has been extended  Recently we proposed a macromolecular liquid state
to nonhomogeneous situatiof®,10] and to perturbatively theory for mixtures of arbitrary polymer to colloid size ratios
include polymer nonideality11]. The forces it predicts for [35], which, although it is not rigorous for dilute systems,
dilute and rather large colloidal spheres have been measurd¥iesents a viable and first principles approach for finite den-
directly[12,13 and phase diagrams for colloidal spheres ap=ities. It is unique in its applicability to all parameter ranges
preciably larger than the polymers have been obtained, arfePncerning densities and sizes, and is a macromolecular gen-
agree semiquantitatively with theofg4—16. eralization[36—39 of the interaction site description intro-

More detailed experiments on the colloidal correlationsduced by Chandler and Andersen for small rigid molecules
[6,17—19, measurements of the second virial coefficient[39]- This generalization has proven rather successful for
[20], and quantitative tests of the phase diagrams for largePure especially dense polymer systems and polymer alloys.

polymer sizes[15,18,19,21-2B have, however, detected Some results for dilute particle mixture systems have been
obtained within a simplification of the approap#0,41] and

could rationalize several surprising aspects of measured sec-
*Permanent address: Physik-Department, Technische Unitersitand virial coefficients of small proteif&0]. Also, light scat-
Munchen, 85747 Garching, Germany. tering measurements of the colloid liquid structure could be
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described semiquantitatively over all length scales withouinput quantities in the colloid theory most widely used for
adjustable parametef85]. large colloid to polymer size ratid$].

In the present paper we analyze in detail the low-density The outline of this paper is as follows. In Sec. Il the
limits of this macromolecular approach. The reasons arénodel of colloid-polymer mixtures is presented. Section Il
threefold. First, by looking at polymer solutions containing describes the solution of the integral equations in the two
few colloidal particles, it is possible to compare with exact!ow-density limits of interest. The thermodynamic consis-
field-theoretic results and thus to test the approach. Secont€nCy equations are solved and discussed in Sec. IV. Section
by Considering dilute po'ymers in a hard Sphere solvent it |SV then pl‘esentS the reSUItS and dISCUSSIOI’]S fOI‘ the structure
possible to make contact with the previous Asakura-Oosawa2nd thermodynamics of dilute colloidal particles in a poly-
type approaches. Third, in these limits fully analytical solu-mer solvent, while Sec. VI describes the opposite case of
tions of the nonlinear integral equations description are posdilute polymer chains immersed in a hard sphere fluid. Con-
sible and provide insight into the theory, which also appliesclusions are presented in Sec. VI, and three appendices con-
to the higher concentration states. tain technical material and a discussion of alternative closure

A conceptually new closur@pproximation for the direct ~ approximations.
correlation function describing the packing of polymers close
to repulsive walls or around hard colloidal spheres has been Il. MODEL
introduced in[35], which entails a medium-ranged colloid- ) . ) )
polymer segment effective interaction. To capture the key The binary mixture shall be described by {matrix of
physics the latter is required within the polymer referencepartia) structure factors5;(q), where the index=1 indi-
interaction site modelPRISM) approach since a preaverag- cates the polymer and 2 indicates the colloid component. A
ing approximation for the single-polymer-chain form factor small molecule solvent is treated as a background continuum
is employed for tractability reasons. In inhomogeneous sysand enters only implicitly via the interaction potentials for
tems, however, the single-polymer form factor depends onhe polymers and colloids. In principle, all partial structure
the distance of the polymer chain from interfaces or inhomofactors are experimentally measurable(lapeling angl scat-
geneities. Considering a fluid of random walk polymers,tering techniques. The total density fluctuations are decom-
Gaussian intramolecular correlations apply. The number oposed into single-molecule contributions, described ligia
intersectipns of a random walk with a plane scales/as ~agona) intramolecular form facton},ij(q):;)i(q) 8; and
WhereN is the number of steps or polymer repea't Units.intermolecular correlationE;ij(q) resulting in
Without rearrangements, the number of contacts with a re-
pulsive wall would scale identically, as the excluded volume - N -
constraint could be satisfied by just mirror inverting the over- S(a)=e w(q)+eh(g)e. @)
lapping polymer strands. This result follows from PRISM ) ) o ) )
with the most simple excluded volume closufef the An o_by|0us matrix nqtat|0n is used. The dlggonal matrlx of
Percus-Yevick form[40]. Close to the repulsive wall, how- densitiese;j=g;&;; gives the number density of colloidal
ever, the(Gaussiapintramolecular polymer correlations dif- Particles and polymer segments. The pair decomposable ex-
fer from the ones in the bulk solution as translational entropyeluded volume or steric interaction prevents the particles/
can be gained by reducing the number of contacts with thé€gments from overlapping,
wall to O(1), asrequired for recovery of the ideal gas equa-
tion of state from the wall virial theorem. In order to describe 0ij(r<3 (oi+0y))=0, (2
the inhomogeneous system with one homogeneous polymer
intramolecular structure factor, the rearrangements close toshere o,= o is the colloidal hard-core diameter arnc;
colloidal particle need to be captured by an effective colloid-= o, is the excluded volume diameter of a single-polymer
polymer interaction that extends across the range where threpeat unit(segment The intermolecular pair correlation
polymer segments rearrange. We proposed a molecular cléunctionsg;;(r) are trivially connected to the total intermo-
sure convoluting the locabarg segmental steric repulsion lecular correlation functions;;, g;;(r)=h;j(r)+1. Carets
with a Yukawa weight where the range, or nonlocality length,in Eq. (1) denote Fourier-transformed quantities. The total
called\ is determined from thermodynamic consistency con-density fluctuations of the interacting fluid are decomposed
siderations. On the segmental level the assumption of shorinto the single-molecule fluctuations and an interaction part
ranged effective steric interactions entered into a Percus#a a generalized Ornstein-Zernicke, or Chandler-Andersen,

Yevick style approximation40,41]. equation[38,39,43,
Thermodynamic consistency correlates the structure on
local length scales with long wavelength fluctuations and is a S Yg)=w ‘o 1-2(q). 3)

familiar concept in liquid state theorig¢d2]. In the present
case, the polymer chemical potential at infinite dilution,
closely connected to the insertion free energy for adding di
lute polymers to a particle fluid, is used to implement con-
sistency as it provides one of the simplest measures of the 1 N

tendency of colloids and polymers to mix. Moreover, this o _ = i9-(fy—"rg)

guantity also determines the free volume, which is one of the wp=w(Q) N aEB (e o) @

In a preaveraging approximation the single-polymer-
molecule density fluctuations
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are taken to be knowa priori. As the colloidal particle is g.to
.. . . . s P
assumed to be rigid and solid, it acts as a point scatterer, e L >

w.=1, subject to the steric restriction, E@). If the effec-
tive interaction potentials, the direct correlation functions,which enforces excluded volume on the local scale by fixing
cij(r) in Eq. (3), were taken to be the bare pair potentials,cg(r) from the excluded overlap condition, E(), and
Gij(r)=—V;;(r)/(kgT), then Egs(1) and(3) would corre-  from the requirement of short-ranged segmental interactions.
spond to the random-phase approximati&PA), which is  On physical grounds, becausekgT cg,(r) describes inter-
one of the Simplest |IqUId state approximations fdensé actions on the Segmental Sca|e, one expeéﬁr) to be
polymeric and simple fluids. Typically one finds that RPA negative(repulsive and to exhibit rapid variationgon the
solutions violate the excluded volume condition, E2). In- segmental length scal@and smoother ones connected with
tegral equation approaches like PRISM go beyond the RPfne colloid size. In real space the closure clearly implies a

as they enforce the no-overlap condition E2). rigorously  smearing of the segment-colloid interactions over the dis-
and determine the direct correlation functions from self-;znce)

consistency equations implementing tfghysically moti-
vated expectation that the (r) are short ranged and vanish
beyond a few particle diameters. For the colloidal hard Ccp(r)=f d®
sphere component this corresponds to the well-established
Percus-Yevick PY) approximation42]

=0, (7b)

1
S
4m\2 |r—9

e shes(s), (79

where the PY closure fmﬁp(r) can be viewed as describing
unconnected polymer segments, and thenloca) confor-
mational constraints on the segment packifudpain connec-

) ) tivity” ) close to colloidal particles are captured by the spatial
This closure and the excluded volume constraint, &).  convolution.

together with the site-site Ornstein-Zernicke equation, EQ. The m-PY closure contains an undetermined parameter,
(3), result in a coupling of density fluctuations at different the jength , which can be expected to vary nontrivially with
wave vectors, thus leading to nonlinear integral equationghe physical system parameters, like densities or size ratio.
with a much richer mathematical structure than the 5|mpl_qg\S it captures the rearrangements of the polymers strands
RPA. For the model of hard spheres, the only thermodynamig|ose to a colloidal particle, its magnitude should be of the
parameter is the packing fractiah,= (/6)0 .o . order of or smaller than the polymer correlation lengta.,
Detailed studies of the PRISM equations for homopoly-radius of gyrationR, for dilute systems, blob diameter or
mer solutions and meltg37,38 have established that the mesh size for semidilute conditionand/or the colloid size.
polymer site-site direct correlation function to a good ap-also, the polymer conformational changes, and henceill
proximation decays to zero beyond the polymer repeat unigepend on the volume taken up by the colloidal spheres. In
size so that a correspondingly simple closure can be emyrder to achieve a parameter-fraepriori description, ther-
forced, modynamic consistency shall be enforced to determine
uniguely. The implementation of this well-known concept
Cpp(r>0a,)=0. (6) within liquid state theories starts from the observation that
the PY closurg38], A=0, leads to results for the solution
Thus, the interaction between polymer macromolecules i§€e energies obtained from the compressibility theorem,
made up of pairwise site-site segmental interactions, whiclig?/dg;d0;)F*= —kBTEij(O), whereF®*is the excess free
are given by a spherically symmetric effective potential,energy per unit volume, which compare favorably with field-
which follows from the excluded volume constraint, E2).  theoretic results where availablgtO]. Thus, the excess
Attractive interactions beyond the “athermal” model studied chemical potential for inserting polymers into a hard sphere
here can be includef38,41]. Site averaged quantities are fluid, where su;=(d/de;)F* as obtained via the “com-
considered and therefore specific chain-end effects are neressibility” route provides a rathex-insensitive reference
glected. quantity since it emphasizes long wavelenth correlations. Es-
As discussed in the Introduction, the effective colloid- pecially, the limit for vanishing polymer concentration shall
polymer interaction extends beyond the range of immediat®e discussed,
overlap. This arises because of, and allows to accommodate,

Ceo(r>o0.)=0. (5)

the change of the polymer conformations close to colloidal %, A ,
particles. As the exact direct correlation function is not N'B‘SME)C)|9p:°: N fo dcN Cep(4=0.20)ly=0. (®)
known we suggeste[B5] a simple one-parameter extension
of the PY closurecalled modified PYm-PY), whereB=1/(kgT), and the expression per molecule is given.
An independent, more local route to the insertion free energy
oS will lead to strongly\ -dependent results, thereby allowing a
~ Cep(a) € i : :
Cep(qQ) = >3 (79 sensitive determination of from equating both expressions.
1+0°A The approach of thermodynamic integration introduced for
RISM approaches by Chandlpt3] shall be used as it con-
with nects the pair correlation functions on local distances to the
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thermodynamic properties. The variation of the free energyorrelation length approaching phase separatsmme mi-
when turning on the interactions via the Mayefunction, crometers Since small amounts of nonadsorbing polymer
t:£[0,1—1), shall be used, wherk] is the physical ~can alter the structure and phase diagram of a colloidal sys-
function andf(J) belongs to some known reference system;tem quite appreciably, simplification to consider rather low
here the Greek indices run over the colloid and the polymepolymer concentrations is of initial interest. Under these con-
segment sites. As only excluded volume interactions ardlitions there opens up a mesoscopic window where polymer
present, and because the limit of vanishing polymer segmer@@gments are well separated but polymer molecules overlap
size,o,—0, is of interest, the thermodynamic integration is@nd interact strongly. Such solutions are called dilute or
chosen to take a mixture of polymers and colloidal pointseémidilute[44], and treatment of this regime is most conve-
particles of free energl,, to the true mixture by growing the niently done by performing the “thread limi{'45,46|, where
colloidal particlesol¥ = {o,. From Ref.[43] one then eas- the size of a polymer segment and the corresponding statis-
ily finds tical segment sizép/\/l—z are taken to be negligibly small;

0,1 ,—0. In order to retain polymer molecules with a finite
radius of gyrationRy, the number of repeat units is in-
creased beyond boundd— 2, such that&j=12N=R3/2 re-
mains fixed. As has been shown by a rigorous solution of the
2 31, 20 PRISM integfal eqqatiqn; ip47], intermolecular excludgd.
+2mocoy Jo d {°gce({oe), (9 volume remains active if in parallel the monomer density is
increased,g,—, such that the number of polymer mol-

where theg'®) are the¢-dependente.g., via the volume frac- €cules  per 5 coil - volume +Rg) stays finite: ¢, _
tion of the colloid particles pair correlation functions that =27(€p/N)&y is fixed. The reduced polymer concentration
are evaluated at the distances of closest approach. Equatigip differs only by a numerical factor from the often used
(9) expresses that the growing colloidal spheres have to pusolymer packing fractiony,=(4m/3)(¢,/N)R3=0,/0}
against the pressure of the surrounding systeolymers and =~ ¢,/0.53, whereg; is the density when polymer coils start
colloids), which—in a virial theorem analogy—is given by to interpenetrate. The mathematical thread limit of the
the probability of contact on the surface. Immediately, onePRISM equations corresponds to a scaling law description of
obtains a second independent result for the chemical potetthe dilute-to-semidilute crossover of polymer solutions and
tial of Eq. (8), which, as argued, depends anstrongly as can be compared to field-theoretic scaling laws and results
the packing of polymer segments close to the colloidal parf48]. In both cases only mesoscopic parameters, the polymer
ticles, gep( 1[0+ ap]), enters crucially, molecule density and coil size, enter and all microscopic
parameters, likery, |, andgpag, drop out. The effective
© _ mEON (1 5 polymer-polymer mteracﬁon becomes of the Edwards
NBow, |ep=0_TJ0 d{(opt{oc) o-function type, c,,(r)=cp(0)8(r), where the intermo-
lecular excluded volume parametét;)p(O) follows self-
consistently from the no-overlap condition, E8). Besides
its use for dilute and semidilute polymer solutions, experi-
ence also has shown, when applying the thread limit outside
its rigorous range of validity, that it describes qualitatively
. adequately the spatially coarse-grained features of concen-
0,=0 trated polymer solutions and me(#49].
(10) Two limits of the scaling function of the single-chain form
factor are known in general, and for Gaussian polymers sim-

Even though it would be desirable to obtainfor all con-  Plify ©0 ©(q=0)=N and w(qRy>1)—(ql,) "> Note that
centration ranges, its form especially for low polymer con-the self-scattering term, which is present in the fu(lg) of
centrations is required. On the one hand, even small amoung&d- (4) for go,=0(1), is notaccessible in the thread limit.
of polymers added to colloidal systems can strongly affectn order to keep simple and analytically tractable equations,
the phase diagram and colloid structure. On the other hand, the full |ntramolequar structure factor shall be approximated
\'s dependence on the polymer parameters is known thely the standard Padaterpolation between the two asymp-

scaling considerations allow reasonable extrapolations of Ot€s,
into the semidilute region as will be shown in Sec. V. There-

TO0,0: 1 oyt {0
ﬁ(F—Fo>=%fod§<op+§oc>2g£‘2(%

X9 =

0'p+§0'c)

0p=0

1 J 9] 0-)
+2wg§a§Nf olgz2—g°°(g °
0 agp

fore, the two expressions, Eq&8) and (10), for vanishing w(q)~ N (11)
polymer concentrations will be used to obtairin Sec. IV. 1+q253'
IIl. SOLUTION IN LOW-DENSITY LIMITS As the single-polymer structure factor is an input to our

PRISM approach, the use of random walk statistics in Eq.

The specified model of colloid-polymer mixtures covers(11) for repelling coils can be considered an additional tech-
all polymer and colloid density regions, and distances fronmical approximation in order to achieve analytical results. In
the polymer repeat unit siz€a. 5 A) up to the collective order to capture effects of the nontrivial intramolecular cor-
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relations (“swelling” and “self-avoiding-walk statistics’) P (@) =
caused by intramolecular excluded volume, Eds.to (10) hep(0) = —2-=S, (q), (143
could be solved numerically with an appropriai€q) [48]. . 1+9°\2 PP
Also, effects specific to semiflexible polymers and arising
from local chain rigidity are neglected in E@L1), but could and
be incorporated into numerical studies.
In this section as well as in Sec. IV, in the appendices and @p E_ip(Q) R

in the figure captions, dimensionless units shall be chosen by hee( )= Ceo(q) + hep(a). (14b)

using the colloid diameter as unit of length,=1. Then, the
length scale rat|<§o=Rg/(\/§oc), the relative polymer con- Closed equations for the pair correlation functions follow

centrationey, , and the colloid packing fractiowp. are the __from Egs. (2), (14), and (5)—(7). Even though these equa-
only remaining physical parameters. Further notational sim:. . . .
o . : = — tions can be solved by straightforward conversion to differ-
plification is provided by definingScc=Scc/@c: Spp ential equations, a simplified Wiener-Hopf factorization of
=(12/020)Spp. Cp=Copoall5, andw(a)=(l,/0)%w(0).  Eq. (14) is used in Appendix A because it is close to the
The limit of considering onlysemiy dilute polymer so-  solution technique of the full equations for arbitrapy and
lutions does not eliminate the nonlinearities of the integraly, (to be published elsewhereand can be presented in a
equations for the polymer and colloid structure. Insights intomore concise way. In Appendix A 1 it is shown that the func-
the physics described by the-PY PRISM equations and tions f;;(r)=r(g;;(r)—1) satisfy simple differential equa-
their full solutions can be gained by reducing one of thetions. The one describing the polymer segment density pro-
densities further to a dilute limit where at most pairwise di-file close to a single sphere is
rect interactions of the diluted species can occur. This linear-
izes the equations in the correlation functions of the diluted
species and thus, as the correlations of the majority compo- (L+Nd)(1+ &) fep(r)=0  for r=
nent are known, simplifies the analysis. These limits will be
studied in the following, where in Sec. Ill, tm-PY closure
parameten still is kept arbitrary.

27& 1+g°\?

N| -

. (19

with initial - conditions f;,(3)=g.,(3)/2-1=—-1 and
fop(3) =0ep(3)/2= (3 + N+ £)/(\£), where a prime denotes
A. Dilute colloids a derivative. Also the direct correlation function at zero wave

- . o . vector is obtained from Eq$A3) and(A9),
In the limit ¢.—0 the equations simplify as the colloid

particles do not alter the structure of the polymer fluid. The !
collective polymer structure factor for Gaussian intramolecu- 6cp(0) = 0[1+ BE+ 12624+ BN (1+2&)2
lar correlations within PRISM equal88] 6N&?
. £ +120%(1+28)]. (16)
S~ 22 (12 : , ,
1+9%¢ For dilute polymer solutions, ¢,—0, the quantity

where the polymer correlation length crosses over froRy, _hN Ccp(o)l is thledcrgss lsecong virial coef;‘]ici((ejnt dﬁscribing
at high dilution to the blob size or density screening lengtht"€ Mutual excluded volume between a hard sphere and a

for concentrations within the semidilute regime, Gaussian po!ymer CO”,' . o .
For the pair correlation function describing the probability

1 1 1 1+2¢, of two isolated spheres in the polymer solution to be at a
A §_o+ PR (13  separatior, the differential equation is
e

Note that the neglect of microscopic length scales corre-

“p _1yo
sponds to the assumption that the polymer concentrations in(lﬂ\af)f“(r)Jr & (UFvhd)fep(r=32)=0 for r=1,

Eq. (13) are far smaller than melt densities, where segments (17)
of different polymer chains start to pack denséiypically
~30—40 % of melt density. with initial condition f;.(1)+1=g..(1). Theunknown pa-

The polymer segment profile close to a single colloidalrametersu andv follow from Egs.(A9) and (A11), and the
particle and the resulting packing of two colloidal hard initial value is given by the colloid pair contact value at
spheres is described by linear equations infinite dilution, ¢,—0,

(28— AN3(1+28) +ANE(L+2E) + N3 +4£—4£7))
482,

where corrections of the ord€(e™*) were neglected. The contact probability for two colloids in principle can be calculated

gcc(l) =1+

: (18
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exactly withinm-PY, but the approximation to neglect cor- 5 [12
rections ofO(e™*) simplifies the expressions greatly, and (1+)"9r)(1+goﬂr)fcp(r):12¢c§oJ_1/2d3 Gp(S)fec(r—s)
for realistic values(see belowwherex < (mostly <) 0.31, (22)
introduces errors of at most a few percent.

From Eq.(15) and the initial conditions, it follows that for r=1, where the initial conditions aréép(%):gép(%)/Z
gcp(r) consists of a superposition of two Yukawa tails, — 71— _1 gng
A "¥r and Ae""™/r, where A;>0 and A\ <0 for A
< ¢, and that it describes a monotonous increase from zero to
unity for <r<oo. Similarly, Eq.(17) shows thag.(r) is a fgp(%):ggp(%)/ 2=
superposition of these two Yukawa tailwith constantsB,
andB,) and of an additional secular ter@,e""*. Never- (22

theless, numerically it is found to decrease monotonously fofjere, the hard sphere functidp.(r) is known[42] and the

all parameters. N o . new factor function is given by
Of interest is the second virial coefficieBf, which fol-

1— e+ 2(N+ &) (1+2¢)
2N Eo(1— ¢e)? '

lows from the(colloid partia) compressibility and measures B 5 1 1 o 1
the strength of the polymer induced pair potenf&0)], Qep(D =5 | "= 7| +bir=5| for —5<r<3
. (23)
BEZTJ d’r hcc(r)|gc=0 and vanishes outside this range; the parameters are given in

Eqg. (A22). Again, the direct correlation function at zero

Hs o wave vector, which is needed for the thermodynamic calcu-
=B; 1_3L drrfee(r)lo ol (19 Jation, can be obtained in explicit forfisee Appendix A 2
where the result for hard sphered,>=27/3, expresses a __GNacp(q:o): 1 + 6(6o+ M)
purely steric repulsion, and negative valuesBaf indicate m 1=de (1-¢0)?

the presence of a net attractive effective interaction due to

“depletion.” One findsBS easily from the solution of Eq. +12("+§0)2(1+2¢c)

(17) with initial value given in Eq.(18) [neglecting correc- (1—¢o)3

tions of orderO(e” )] and parameters in Eq$A9) and

(A11). ForA =0, the PY result of Ref.40] is recovered. The +24)\§0()\+§0)(1+2¢C)2 (24

virial coefficient, as it still contains the parameterwill be (1- )
discussed in Sec. V after the determinationofrom ther- ¢

modynamic consistency. The polymer pair correlation function follows from Egs.
(A24) and(A27) forr>0

B. Dilute polymers e i
o _ (LN (L+Ed) (1) =2, € o0tz €7

In the limit of adding only a few polymers to a dense fluid 0
of hard spheres, the-PY PRISM equations simplify to , (12
o +12¢C§OJ71/2dS C};p(S)(I’—S)
qu§p(Q)A_

hcp(q): 1+q2)\2 cc

(a) (203 X[gep(r—s|)—1], (25)
where the initial conditions arg,,(0)=0 andf;,p(O)z -1,
and the parameters are given in E426). Clearly, by means
. of the last term the colloidal spheres imprint their local pack-
6. wcip(q)A ing structure onto the dilute polymers. In order to explicitly
= 1+q2)\2hcp(Q)v (20b) calculate the pair correlation functions, numerical integration
of Egs.(21) and(25) is most convenient.
- Also of interest is the intermolecular excluded volume
where the structure factor of the pure hard sphere fliid,  parameter that describes a colloid modified effective interac-

is given in PY approximation. The unperturbed length scalgjon for polymer segments on different chains,
characterizing the polymer correlations is givendgyas for

and

I:\]pp(Q) = wgapp(Q) +

an isolated polymer. Colloid mediated interactions arise as " b&2+2z, +2,

e ) . Cpp(0)&o 0T AT Ly,
the polymer coil is forced to squeeze into the voids between pp = , (26)
the spheres. In Appendix A2 it is shown that the functions — 8l At &

fij(r)=r(g;j(r)—1) satisfy linear integrodifferential equa- ) ) ] o
tions with known integration kernels. The average polymervhere the parameters are given in Appendix A 2. It simplifies
segment density around colloidal spheres increases accorth Cp,= —877I3/§0 for the pure polymer system and is con-
ing to nected to the polymer second virial coefficient via
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6

ated at a microscopic separatio?wp because ofgcp(%
a

Cen(0)1%Scc |, = - ; . .
[Cep(0)]Scc +0,/2)=39¢,(3) 05, predicts the correct scaling behavior
(27) of the contact value, Eq28),

oL 1.
BS=— Shpp(4=0)=— 5N?| Cppl(0) +

which become®5= — 3N2c,,(0)=RS when no colloids are 1+o,) 102 1
resent. — =z for £,—0, (29
g ol T2 T 2N 1mge
IV. ENFORCEMENT OF THERMODYNAMIC and thus recovers the ideal gas result for the chemical poten-
CONSISTENCY tial from the “wall virial” route. Evidently, however, the

The solutions for the structure of colloid-polymer mix- microscopic qistance CQUId qnly b_e calculated if the full
tures open up two very different calculation routes to the” RISM equations _also including microscopic Ien_gth scales
thermodynamic properties. One, via the long wavelengttVe'e Solved. As this has not bezzen achieved yet, in 3&
fluctuations, termed “compressibility route,” is suggested infor simplicity the distancer;= 217 was chosen, because then
Eq. (8) for the insertion free energy of polymers into hard the distance over which pointlike polymers rearrange close
sphere fluids. The second, E40), uses very local informa- to a colloid sphere becomes numerically identical to the
tion captured in the contact values of the pair correlatiorPolymer correlation lengthy = &, for {,—0. Note that this
functions. Within integral equation theories for the structureholds for all colloid packing fractions and th&g has to be
of many-body systems, both results generally do not coincidehosen only once.
and in them-PY closure this aspect of “thermodynamic con- It is the major difference of then-PY closure to the pre-
sistency” is used to determine the effective interactionsviously studied PY description, wheke=0, and(as can be
length scalex from equating both results. expectedl to prior numerical solutions of the PRISM-PY

The ideal gas result for adding point polymegs;—~0,  equationg51,52, that thermodynamic consistency da, is
immediately follows from Eqs(8) and (24) and the obser- possible in a scaling sense. FpE=0 in the PY case, the
vation thatk « &, (corresponding to the polymer appearing asmesoscopic pair correlation function predicts a scaling of the
an |n.pe.netrable(§)mall sphere to the coljofts to hold i colloid-polymer contact value agqp(1+ 0y/2)=op/[ (1
this limit: NBSuy”|o 0= —~IN(1- o) +O(&). This change  — ¢ )] for ¢,—0, thus violating Eq(28) and the ideal gas
in translational entropy when dissolving a point polymer in ainsertion free energy. Obviously, the PY closure overesti-
sphere solvent of packing fractiahy, is connected to the free mates the segment density of polymers, even of an isolated
volume fraction accessible to the polymer,"#*#»=V;/V  polymer, close to walls or colloidal spheres, as a fagftr
=1—¢.. The free volume for finite colloid but vanishing too high contact probability is predicted. This comparison
polymer concentrations is a central quantity in the phasgustifies the motivation and the physical interpretation of the
studies of the free volume approach by Lekkerkerkeal. = m-PY closure in Sec. Il. Additionally, the PY approximation
[5]. In order to arrive at the same ideal gas limit from thex=0 predicts a segment density profile, which increases
polymer-colloid contact probability in Eq(10), since much more strongly,

(a/azpp)gcc(l)lgp:o:O(ggl) as follows from Eq(18), the

following result has to hold for the contact probability of Y 1 2+44¢, ( 1) o ( 1)2}
; i . ry= + r——|+ r—=| |
polymer segments with the colloidal surface: Yep Eo(1=do)  (1— )2 2 2
1+o,) 1 for &0 (29) compared to
el 5 | T NT=g, 'O S0—0
d’c () 1 ”( )( 12+O 1)3
rN=x= SIr r—=
The contact value should be microscopically small, vanish- Jep 29| 2 2 2

ing in the mesoscopic limiN—~. In the threadm-PY )

PRISM limit described in Sec. II, where microscopic param-ffom Eq.(22), and thus strongly underestimates the polymer
eters were scaled away, the colloid-polymer pair correlatiofnduced depletion attraction. This follows since for small
function agrees with this result. Thread PRISM correctly pre-Separation of two colloidal particles, PY predicts a linear
dicts on mesoscopic scales th;aﬁtp(%)ao. In the case of 'ncrease of the polymer density in the gap, whereas the cor-

o . . ) rect [25,30 and m-PY result for Gaussian polymers is a
(semiy dilute polymer solutions a scaling connection of the uadratic increase
segment-segment contact value to_the mesoscopic scall_n Extension of the expansion for smafh, leads to the
law description could be shown, which enabled one to est|-h, h q Ih = 2, 3% h h
mate the microscopically small contact value from an evalulligher order resulh = &,—4&+ oA (¢c) + - - -, where the
ation of the mesoscopic pair correlation function at a micro-d€pendence on the sphere fluid packing density indicates an

scopic separatiofd8]. From the parabolic polymer segment anomalous behavior of for ¢.—1, i.e., one findsA(0)
density profile close to a colloidal particle and EB2), one =16 but A(¢.)— — 144/(1— ¢)? for ¢.—1. As \ is re-
realizes that withirm-PY this again is possible. The meso- stricted to positive values, a different expansion scheme is
scopic pair correlation functiofi.e., the thready.,) evalu-  required for high colloid packing fractions and for large
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polymers or small colloidal particles. It is described in Appendix B. The calculation leads-td (¢.) for &g— o, where

1
———-0.80... «—0
e 080 (get ), ¢

Alde)— (30)
B 1404078 [(1- Pt ], el
Er (90078 [(1- 4 bl

which verifies the interpretation of as the range of polymer density dependent one&, from Eq. (13), then A also is
segment rearrangement, because it is always less than tkeown for ¢.=0 but now arbitrary polymer concentrations,
smaller of the two molecular sizes, and becomes vanishingly,>0. This replacement is suggested as the role of the
small if no free volume is available for the polymers. Exactsingle-polymer-molecule structure factes(q), in Eq. (20)
determination o\ from Egs.(8) and(10) for all parameter is taken over by the collective on&,,(q), if the densities
values is difficult because thermodynamic integrations arare changed accordingly. This standard procedure from
required. Thus we proposed the approximation to interpolat@olymer-scaling approaches thus substitutes the blob size or
between the known exact limif85], density screening length in place of the chain size for semi-
dilute situationg44]. In Sec. VI, it will be shown that this
1424 ﬁ (31) extrapolation achieves thermodynamic consistency for the
1-¢p. o’ insertion free energy of adding colloids to a polymer solu-
tion, i.e., for quite a different thermodynamic quantity as

where\;=(y5+1), £=¢, for vanishing polymer concen- originally considered for the determination)of In Ref.[35],
tration, and for convenience dimensional units are restoredhis way of extrapolating\ to finite polymer and colloid
This Padeapproximation satisfies the thermodynamic consistoncentrations was suggested and used  with
tency condition from Eqs(8) and (10) up to relative errors =¢&(de,¢p,&0) being the full polymer correlation length,
of 15% for all parameter values, see Fig. 1. For small polywyhich depends o, ¢p. and&. In the two cases consid-
mers, A follows the polymer correlation length. For large ered here it simplifies tet( e, 0p=0,60) =&, and &(¢be
single-polymer coils) is expected to be determined by the =0,0p,é0) = &0/ (1+2¢,), see Eq(13).
pure hard sphere fluid correlation length beyond which den-
sity fluctuations are screened, whichds dependent. The
result in Eq.(31) can be shown to be in excellent agreement v RESULTS FOR COLLOIDS DILUTED IN A POLYMER
with this intuitive idea. SOLVENT

The expression in Eq31) immediately suggests an ex- ) o
trapolation for\ from its present calculation at vanishing  If only a small amount of colloidal hard spheres is dis-

polymer concentration to finitg, . If the polymer correla- solved in a polymer solution, then the structure of the poly-
tion length of the dilute situatiorg,, is replaced with the full Mer fluid is not affected. The intramolecular density fluctua-

tions or the form factors for the individual polymets(q),
are rather well understood from field theoretic considerations
[53]. PRISM describes the packing, i.e., the intermolecular
correlations of the polymeric macromolecules that are sim-
plified to Gaussian chain molecules in the present work. The
intermolecular pair correlation function exhibits the well-
known “correlation hole,” which shows that polymer mol-
ecules for entropic reasons softly repel each other. The cor-
relation hole has a nontrivial structure on the length scale of
the size of the moleculéradius of gyratioh and also for
shorter distances, on the mesh or blob scale characterized by
the density screening length
log,, éol Close t(_) the diluted cplloidal partiple _the polym.er seg-
ment density is less than in bulk resulting in a depletion layer
FIG. 1. Polymer molecule excess chemical potentials,Of varying width. Its form is described by Eq15) and
Suplo,~or @s functions of the size ratigy from the two different shown in Fig. 2. The width is given by the polymer correla-
routes used to enforce thermodynamic consistency for three colloiion lengthé as long as the particle is much larger. Only for
packing fractions as labeled. The solid lines give the results fronflilute polymer solutions, this correlation length agrees with
long wavelengths, Eq8), the dashed lines the corresponding onesthe polymer size&,. In the semidilute region, it is given by
from local packing, Eq(10). The inset shows the relative errors, the blob size or mesh width. If the particle becomes smaller
which for all parameters are smaller than 15%. than the polymer correlation length, then the depletion layer

Nl=gty

A5
T

[\
T

log,((NBSW,)

-2 -1 0
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FIG. 2. Polymer-colloid pair correlation functiogey(r), exhib- FIG. 3. Colloid pair correlation functiong.(r), for two iso-
iting the polymer segment depletion layer close to an isolated collated hard spheres in a solution of polymers with size régie 5
loidal sphere for various polymer correlation lengthss labeled.  for the denoted polymer concentratigr,. The inset shows as a
The inset shows a double logarithmic plot of the widthof the  solid line the rangew of the depletion attraction estimated by

depletion layer, defined byg.,(r = %+W)= % as a function of¢; Oec(r=1+w)= %[1+gcc(l)] as a function of the colloid-polymer
thin dashed lines mark the asymptotes-1.66£ (w—1.1) for ¢ interaction lengthx. Curves for various polymer concentrations
—0 (¢§—), respectively. (¢p=0.1,1,2,10 overlap, while the size rati@, runs between

0.01=<¢;=<100. The dashed line compares the width of the deple-
width crosses over to the particle diameter. This is shown irtion layer ingc,(r) from Fig. 2.
the inset in Fig. 2. If very small particles are immersed in the
polymer solution, then the depletion layer has an additionatancer, Egs. (17) and (18). As seen in Fig. 3, for close
power law tail due to chain connectivity correlations, whichdistances and especially at contact, this probability is in-

becomegyp(r>1)=1—(3+1/\)(a./r) for é— [25] creased above the random value of unity. The(r) de-

In the dilute polymer solution limit, the PRISM result créases from the contact values, EG8), monotonically
compares rather well with field-theoretic calculations fromithout oscillatory featlfjfres or layering. Thus, the effective or
Ref. [25]. While the width is of the same order in both re- induced potential, BV*i(r)=—Ing.(r), is attractive and
sults, especially the small distance power-law increase of thtg‘otno'[oln'c’ amlj doleks no(tle)thnt rep/lglswe b_?r:”erl?" j;hefcon—

: . 1 v 2. act value scales likgc(1)—1~¢,/& in either limit o
density proflle_, 9op(r) zgcp("’.)(r ool2) k-, can be very small or very large polymers, i.ey—0 (). The dis-
compared as it obeys a scaling law, where theiversal

: . - . tance characterizing the decaygqyf.(r) is closely connected
amphtud_e of PRIS'YI(Sem'.9 quanutatlvely agrees with the to the width of the depletion layer as seen in the inset of Fig.
known field-theoretidFT) limits,

3, and both depend on the polymer parameters only via the
nonlocality length\. The correlation between two colloidal

1 1 i i
- = . particles that are much smaller than the polymer mesh width
1 53 (PRISM) fé (FT),  £—0 falls off for large distances asg.(r>1)—1+(1
g’c’p(i) . o +2I\q)%(ml 3020, /1) for £, indicating a weak but long-
_21 (PRISM — (FT), & L?ggesciizztt(;ﬁftlo[ﬂ?]. It becomes screened at the polymer or
O¢ Oc Y. . .
(32 A measure of the tendency of colloidal spheres to dissolve

in polymeric fluids is given by the chemical potentials or
The PRISM result for the polymer profile in E(L5) extends ~ solvation energies. From the compressibility route in analogy
into the semidilute concentration region where mean-fieldo Eq.(8), one finds
calculations for the case &;<o are availabl¢30]. Again,
the amplitude,g’c’p 1)—1/¢? for é—0, agrees verifying its
universality[25,26]. Only in the case of very large polymers,
m-PY overestimates the depletion effect by ca. 20% in Eq.

(32) Figure 2 shows that the width of the depletion Iayer forFrom the free energ&see Eq(g)] required to grow the col-

semidilute solutions is set by the pO!ymer correlation |engtho|d partide from a point to its actual size one finds
(for <o), and that the molecular siZ, plays no role for

the depletion layer; this also is evident from E#5) where 70382 (1
: . p~cSo

only the correlation length of the collective polymer fluctua- ,35M(C9)|Q :O:—f d¢ gzgggp) "(¢12)] g —0- (34)
tions appear. Using an effective pair potential approach ¢ 2 0 ¢
[1,4,5 determined under dilute polymer conditions strongly
overestimates the range of the depletion interactions in semkor dilute polymer solutions, wheré= &, the result from
dilute polymer solutions. both routes obeys thermodynamic consistefigy to errors

The polymer induced depletion attraction becomes appamef 10%) and agrees with field-theoretic results up to 20% as
ent from the colloid pair correlation function describing the shown in Fig. 4. From the local packing information, Eq.
probability of two isolated colloidal spheres to be at a dis-(34), an explicit result can be found,

Qp ' ’
ﬁfm?’lgczo:—fo dejCep(A=0.00)lo.—0- (33
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FIG. 4. Colloid excess chemical potentials at infinite dilution,  FIG. 5. Colloid second virial coefficierBS in units of the hard
BSuclo.~0, In units of (wc,/6) as functions of the polymer to sphere resultB}S=27/3, as a function of the polymer concentra-
colloid size ratio&, for four polymer densities as labeled. The solid tion for various size ratiog, as labeled. The solid lines present the
lines give the results from long wavelengths, E83), the long  results from long wavelengths, Eq4.9), (38) and(39), the dashed
dashed line is the result from local packing, E@) and(35), in lines present the results from local packing, Ed4.). The curves are
the dilute polymer limit. The short dashed line compares the field-cut in order to prevent overcrowding the figure. The inset shows the
theoretic result known in the dilute limi25]. The inset shows the semidilute scaling lawb$(¢£) from Eq. (40), which applies to situ-
relative errors in thermodynamic consistency for the four polymergtions where the polymer correlation lengtkblob or mesh sizeis
densities. of the order of the colloid diameter. The solid line again follows

from Eq. (19 and the dashed one from Eg@-1).
3 )2

O¢

342
mCho &5

135Mg9)|gc:o:6—§2 to thermodynamic consistency also in these catas

claimed at the end of Sec. JVas both routes, Eq$33) and
(35) (34), lead to Eq.(36) identically and the results in Eq37)

which has a number of polymer specific features. For aquicPnly d|ffer by a ngmencal prefactgr, wh|ch cogld be ab-
of small polymers or far into the semidilute regime,-0,  Sorbed into a density dependent microscopic lengifty).
inserting a colloidal sphere costs the free energy of creating |N€ mean polymer induced depletion attraction for two
its volume by doing work against the osmotic pressure of thé&olloidal spheres can be quantified using the second virial
polymer fluid. For larger polymers, the form of the poly- coefficient BS, which is acc_eSS|_bIe experimentally. Repre-
meric coil enters, and in the limit of very large polymer Seéntative results are shown in Fig 5 and demonstrate that the
chains the chemical potential becomes independerRof €ffective colloidal pair potential depends on the polymer
and scales linearly with the length over which polymer segoncentration and the polymer to colloid size ratio. For small
ments need to be rearranged, which is just the colloid diamPolymers, the result, obtainable from H@9), simplifies to
etero.. As the added sphere sees local strands of the poly-
mer network only, the result for small spherical colloids B> 1 12¢,  3(28N\1—53) ¢péo

e onlla
1+( 6+ =Ny |[— ]| +6),

2 fo

. . s 152 > for &,—0,
become_s mdependent of the polymer’s sig)(or degree of B} +2¢0p 4(1+2 ©p) 0
polymerization, and also independent of the mesh or blob (38)
size. Thus it becomes independent of the polymer molecule . = | ) )
concentratior29] which indicates an appreciable attraction between the two
’ colloids. Note that the third term is positive and predicts a
Biclo —o— wgpaclf,)\l for ¢—oo, (36)  weakening of the attraction when the polymer size starts to

grow. Increasing the polymer density strengthens the attrac-
which holds in the dilute and semidilute region. This resulttion, which saturates at a finite negative value. The reliability
also quantitatively compares favorably to the known behavof these results is discussed at the end of this section and in
ior in the dilute limit[25], ,35Mc|gc:o—>4779p0c|§- For the Appendix C where alternative clqsures are gxammed. _
semidilute region, the two routes in Eq83) and (34) pre- For very large po(ljymers, again an effective two-colloid
- ’ attraction is observed.
dict ﬁ5ﬂ(cc)|gczoﬂéﬁ5ﬂfzg)|gczo and

o 4 Bg 3(2+)\1)2 ‘Pp(folo'c)
21—
BouS) g ~o— g oeBll, Bll=5cppp for gp—c, BHS N2 (1+2¢,)?
37) (24+18\1+3\)) o,
which explicitly states the connection to the osmotic pressure - 5 )\f(l+ 20)) for §o—o. (39

IT of the pure polymer system, which is given in the PRISM
approximation for Gaussian polymers in E§7). Note, that  As seen in Fig. 5, two hard spheres immersed in a fluid of
the extrapolation oh to finite polymer concentration leads much larger polymers feel an induced attraction, which var-
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ies nonmonotonically with polymer concentration and in-however, also for smallef, B becomes more negative, pre-
creases with polymer size as previously found based on theumably because the depth of the attraction increases.

A=0 PY closure[40]. Its origin is purely entropic as the There does exist a caveat for the above results on the
added particles hinder conformational fluctuations of thecolloid-colloid interactions7,9,35,4Q. Liquid state theory
polymer strand they are embedded in. For large distancesand alsd4]) with PY-closure, density functional approaches
the conformational entropy loss at both particles is additiveto the colloid structure, and free energy based approaches
For shorter distances, however, chain connectivity restrictfs], all underestimate the depletion attraction in situations
the conformational fluctuations of a polymer molecule evenwhere it far exceedkgT. This error, which presumably af-
without added particles. Thus the additional entropy loss igects the results for dilute colloidal particles in a dense sol-
smaller if the two particles are close. This induces an effecvent of small polymersg.—0, &<o,, and@,>1, arises

tive long-ranged attraction among the colloidal particles. Fofrom an inherent linearization of the depletion potential in
small concentrations, adding polymer strengthens the effeahe considered binary-mixture approach. Therefore it is for-
tive attraction. Around the dilute-semidilute crossover dentunate that a thermodynamic consistency condition can be
sity, however, the effective range of the polymer inducedformulated explicitly addressing the accuracy with which the
attraction crosses over from the polymer size to the meshepletion attraction is handled. There exists another indepen-
size and thus starts to decrease appreciably. The latter effegént expression foBS, which follows from Egs.(9) and
dominates in the semidilute concentration region and there(14) and the definition(19),

fore BS decreases again. It is important to mention that a
mean-field approacH53] employing a RPA, where¢ BS
~1/\/g_p, would be too crude to handle this competition and B_HS:
would miss the increase &35 above the overlap concentra- 2
tion. Apparently, a simple superposition approximation, (pp§2
which decouples the depletion layers around each of the col- - @
loid spheres, misses the long-ranged, but weak, attraction 0
[54]. The minimum value oBj for the considered Gaussian o )
polymer  statistics s _[3(2”\1)2/16)\%](50/%)% This result follqws from the local _packlng. information anq
~0.17(Ry/R;), which is asymptotically deeper than the shows a very different and unphysical scglmg compared with
vaIue—O.SO(Rg/RC)O"‘O for self-avoiding-walk polymer sta- the result from large wavelength fluctuations for small poly-

. K i H c(g9)/pHS
tistics [29]. The more swollen polymer molecules in good M€ and/or3 high ~ polymer  concentrationsB;™/B;
solvents apparently are more open to the particles and allow” 23 (¢p/&o)”. This throws severe doubts on the resultin Eq.
stronger interpenetration so that the induced colloid attract38) and on our treatment of the depletion attraction in these
tion is smallerf27,55. two cases§,—0 or ¢,—, where from a pair potential

Deep in the semidilute density regiap,— =, the second point of view the depletion attraction should be arbitrarily
virial coefficient again saturateBS/BY— —5, indicating a  |&r9e. Thusm-PY PRISM with the PY closure for colloid-

finite effect of the pairwise attraction, which is independentclloid correlations apparently cannot capture the strong in-
of the size ratio. This limit corresponds to a vanishinglyduced attraction in these two limits of theoretical interest as
small polymer blob size. Yet, for large polymers there can'@S Peen pointed out previous¥5,4d. As the second virial

open up a window, where adding polymer only slightly coefficient can be considered a worst case example of this
changesBS in a mahner that is much weaker than at thefailure, Appendix C examines this issue using different the-

2 . . .

overlap concentration but still differs from the asymptotic oretical apprpgches. Rgassurlngly, the results for the colloi-
value. This is the polymer concentration range where th al second virial coefficient for large polymers are recovered
polymer mesh width is not yet negligible compared to thesem|quant|tat|vely from the two routes within-PY PRISM.

particle size and there a broad maximum develops, The scal_ing in the Iimit_of very "'?“ge pon_mer_s is recovered
exactly, i.e., the term diverging linearly witf, in Eq. (39).

aarer2
[as o0+ o[ Pag 70 52

3
4850 0 d ¢c

( f Y 207 (12)
0

2
} . (41)
0.=0

BS Equation(41) also predicts that a scaling law exists for the
—=—Dby(¢) for pp—®, Eg—® with £=const. second virial coefficient of colloidal particles in a polymer
B?S mesh, which semiquantitatively compares with the one of

(40 Eq. (40), see Fig. 5. Intriguingly it also shows the nonmon-
_ e _ _ ) tonic behavior 01~B§(§) for intermediatet.

The scaling functiorb$ is shown in the inset of Fig. 5. For
semidilute polymer concentrations, the depletion attraction
among two colloidal spheres depends nonmonotonically on
the ratio of the blob to the sphere size. There is an optimal
blob size that roughly equals the sphere radius, where the While numerous field-theoretic results for polymer solu-
induced attraction is minimal d8$ is maximal. This makes tions exist, including for the question of dissolving one or
physical sense since far./2~ ¢ the particles can “just fit two particles in dilute solutions, and could serve for tests of
in” the polymer mesh spaces without distorting it. For largerthe m-PY results in the previous section, to our knowledge
polymer correlation lengths, the crossover to B39) sets in  little is known about the packing of dilute polymer chains
because the range of attraction increases. Unexpectediyito dense particle fluids. The case of present interest is when

VI. RESULTS FOR POLYMERS DILUTED IN A HARD
SPHERE FLUID
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FIG. 6. Polymer-colloid pair correlation functiogy(r) for a ¢
polymer added to a hard sphere solution; colloid packing fraction FIG. 7. Polymer excess chemical potentials at infinite dilution,
¢ and size ratict, as labeled. The inset shows the widirof the 5/.Lp|9p:0 [in units of 1/(NB)], as functions of the colloid packing
depletion layefdefined ag.,(r =  +w) = 3] versus the interaction fraction for four size ratios, as labeled. The solid lines give the
range\ for the labeled colloid packing fractionk, . The curves are  results from long wavelengths, E(B), the long dashed lines the
parametrized by the size rati§, which varies as 0.0££,<100  corresponding ones from local packing, Etj0). The short dashed
with increasingw and\. lines compare the equivalent PY results for inserting a sphere of

) ) radius equal tdRy as used in the phantom sphere approach of Ref.
the particles are much larger than the repeat units of thes),

polymer chain, and both components are immersed in a
small molecule background solvent treated as a continuuninappropriate, because it requires that the range of the poly-
If the amount of added nonabsorbing polymer is small, thenmer induced colloid-colloid potential, which naturally is con-
the structure of the colloidal fluid is not changed. In thenected to the depletion layer, itself becomes particle density
present treatment it is given by the reliable and easily im-dependent. The inset of Fig. 6 shows that there is a strong
proved PY-theory description. correlation of the colloid-polymer interaction ranyeto the
Whereas the segmental depletion layer of a single polywidth in the depletion layer. While varying the polymer size
mer (or a semidilute solutionaround a singlespherical by four orders of magnitude, neither the width nochange
particle exhibits a monotonic dependence on the distance t@s strongly. Moreover, for somewhat higher colloid solvent
the surface of the particle, adding further particles forces theoncentrations the width becomes a unique functior\ of
polymer to squeeze into the open spaces. Thus the probabikhich only mildly splays out if¢, is decreased. Both quan-
ity of finding polymer segments at a distancefrom the tities furthermore arrest at finite values in the limit &f
center of a colloidal particleg.,(r), develops an oscillatory —o=, since the relevant length scale is then the colloid size.
structure whose period is correlated with the colloidal size. If the solvation free energy for adding nonadsorbing poly-
In Fig. 6 the evolving layering of the segment density ismers to a fluid of spheres is considered, E@.and (10),
shown. For high particle densities, the polymers pack tightlythen the ideal gas limit result discussed in Sec. IV only holds
into the voids and thus are close to the particles. The deplder point polymers&,— 0. As expected and shown in Fig. 7,
tion layer, even though present, in principle, is restricted byit becomes more difficult to add larger polymers because less
the colloid spacing and varies with external parametersfree volume is available for them. The compressibility ex-
Thus, the assumption of an effective pair potential becomepression, Eq(8), can be integrated analytically yielding

A 5 4 2
6¢c§0 1+)\_1 6¢C§g(2+¢c) 1+ )\_1) 6¢’c§0 )\_i_)\_l O¢
©  _=—In(1- '
NBOwylgp=0= ~INA= bt — =gy * AL-d? 14, 20 1+x1@—¢(1‘2klé”
O¢ O¢ ¢ O¢

(42)

which was compared to the virial route in Fig. 1. For largerlarge polymers because they can wrap around the fluid par-
polymer coils, the added macromolecule loses conformaticles. Therefore, if Eq(42) is compared with the corre-
tional entropy when squeezing into the fluid interstitials andsponding result from scaled particle or PY theory for the
thus the free energy cost increases. Yet, its increase is not agldition of spheres with sizBy to a sphere fluid5], then
rapid as if the polymer was a sphere because the polymewo qualitative differences appear for largg>o ;. First,
chain can rearrange. This becomes especially important fanly a quadratic scaling with the polymer size results,

021514-12



MACROMOLECULAR THEORY OF SOLVATION AND . .. PHYSICAL REVIEW E64 021514

4 f(o,)

5,5, 0,-0.05
0 2 4 r 6 0.2 04 q)c 0.6
FIG. 8. Polymer-polymer pair correlation functiay(r) for FIG. 9. Normalized polymer second virial coefficieB*

dilute polymer molecules immersed in a hard sphere solution; the- BS/(47T§§) as a function of the colloid packing fraction for vari-
colloid packing fractionsp. and size ratios, are the same as in ous size ratiosé, as labeled. The inset shows the normalized
Fig. 6 and as labeledd(;=0.5 for {,= 0.1 and 1. The thin lines  polymer intermolecular excluded volume  parameter?
present the asymptote for large polymers, E4f), evaluated for  —; &<z, /(871%) as a function of the polymer sizg and the(in-

§0=5 and 1 at¢;=0.5, while the inset shows the intermolecular gjstinguishablg approximation Eq(45); for the inset, the colloid
polymer segment contact valu&¢.), which determines this packing fraction is.=0.2.

asymptote.
particles. For larger polymers, this segmental layering is

6h(2+ )| 1+ —| smeared out and after an initial rigg(r) monotonically
© N & decays to its random value. In the limit where the particles
By |9p:°—> (1— ¢be)? No2 for §o—co, are much smaller than the two polymeric molecules, but of
Cc Cc

course still much larger than the segmental repeat unit size,

(43 the two polymers entwine strongly. Fgg>1 and¢,—0,

whereas for(large added spheres the chemical potential g
scales with the volume of the added species. The behavior in Gpp(r)—1+[f(¢c)—1]e" "0,
Eq. (43) is connected to the largéscaling of the chemical
potential for adding spheres to a polymer solution, discusse¥here
in Egs.(36) and(37), because both quantities are determined
from the polymers’ ability to deform around a particle. In Eq. (o) = $c(6N1+1-4¢)
(43) this explains why the right-hand sidens) becomes in- “2(1-¢)(1+2¢.)
dependent of the degree of polymerization and linearly de-
pendent on the colloid size. Second, the increase with pafellows from Egs.(21) and (25). Within the coil radius, for
ticle fluid density is weaker than the corresponding sphere< &, the distribution of segments from two chains is almost
mixture result, which would predict a cubic divergence for constant and does not exhibit the self-similar power-law be-
¢.—1. Thus the difference of both approaches becomehavior, 1f, of open(Gaussiah fractals. Only for distances
more important at higher sphere concentrations. Note that tharger than the coil size,> &,, does the intermolecular seg-
free volume expression used in Rgb] is connected to ment distribution decay to uncorrelated packing. The prob-
Stiplo =0 Via a=Vj V=g NFouple,~0 The input to this ap-  ability of segments of different polymer chains to be close,
proach, the chemical potential for adding a sphere of radiugs measured by the pair correlation function contact value
R, to a hard sphere solution, is included in Fig. 7, and forf-(¢), is determined by the particle packing fraction, and
large polymers strongly overestimates the free energy coder ¢.=0.11 becomesmuch higher than the bulk density.
for insertion. This increase is a precursor of the demixing transition at
The pressure exerted by the particle fluid on the polymefinite polymer concentrations35]. For ¢.~0.5, the density
also manifests itself in the dilute limit intermolecular pack- of segments from other chains within Ry, distance of a
ing of the segments of two polymers, which is described bytagged segment is more than an order of magnitude greater
gpp(r) for ¢,—0; examples are shown in Fig. 8. The than in the absence of colloids. This may have significant
potential-of-mean force between segments is given bygonsequences for intermolecular processes such as chemical
—kgT Ing,(r), while its polymer molecule analog is of the reactions or energy transfer bgtvveen polymers added at di-
order ofN? times larger. The slight repulsion of polymers in lute Ievgls to colloidal suspensions or porous matenals._
solution that causes the correlation hole is overcome at the The intermolecular excluded volume parameter, defined
distance connected to the depletion layegig, as seen by ~asvg*(¢e)=—Cyp(0), or therelated polymer molecule sec-
comparison with Fig. 6. For larger distances the polymerond virial coefficientBY determine the importance of the
segments are pushed together and therefore pack moexcluded volume interaction on the polymer packing on local
densely than random. For small polymers an oscillatory patand macromolecular distances, respectively. Results are
tern develops connected to the distance of voids between tlehown in Fig. 9. On local distances, it appears plausible that

(44)
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a polymer chain should experience the identical steric repul- - - 877Ig 1 3(2411)? dooloe

sion from a segment of its own backbone as from another of v () = 1 5 5|

the chemically identical macromolecules. Thus, the result in So \1=dc A (1-¢0)

Eqg. (26) can be used to discuss the effective excluded vol- (45)

ume parameter induced by the deeLletant particles. For vanngicates that the effective local segmental interaction stays
ishing colloid concentration, wherei andB are directly  renyisive for all size ratios and particle fluid concentrations.
related, the interpretation of polymer chains as repulsivexsymptotically for small depletant particles, it becomes in-
spheres is recovered in PRISM becau§&/(¢)<1/R; and  dependent of the macromolecular size and saturates to a
thereforeBgocRg. Note, that our present model thus does notpositive value that increases with.. This is found even
describe® solvents, wherd5=0, even though a Gaussian though, mesoscopically, two polymers are induced to inter-
intramolecular structure was assungegriori, but rather de- twine, and for somewhat higher polymer concentration,
scribes polymers in athermal solutions with the technicaphase separation into a polymer gas and polymer fluid phase
simplification to treat the polymer chains as random walkssets in [35]. At macromolecular distances, the effective
For results with self-avoiding statistics, see, e.g., Refspolymer-polymer molecule interaction can become very at-
[48,56|. The result in Eq(26), which to a very good approxi- tractive if the particle density is high or the colloidal par-
mation simplifies to ticles are large,

s 3 _ 2 _
o[ gl 2100 bo| (o
12 ] (1+2¢0)%  (1+2¢)° ¢
Bg~>< 1 ) (46)
4wgy | 364 I+ht3h for &g—oe.
| T+260| 7 (1=d0 3

For small polymers, the result known from PY theory for unique possibility of extension to higher densities. Interest-
hard sphere mixtures is recovered. It is negative and deng predictions arise for the colloid induced pair interaction
scribes the tendency of the polymer point particles to clusteff dilute polymers, which are much larger than the particles.
Increasing the polymer size somewhat increases this terstrong interpenetration is predictésee Fig. 8 finally lead-
dency. For large polymers, however, a finite colloid densitying to fluid-fluid phase separatid85].

is required in order for the colloid induced attraction to over- |n this context it is important to stress that the approxima-
whelm the segmental repulsion. The virial coeficient be+ion of Gaussian single-chain correlations is done for purely

comes negative only fop=0.18 ... for &x>1. technical reasons in order to achieve analytical results. Of
course this entails that the majority of the scaling predictions
VIl. CONCLUSIONS derived in the present and previous wdiB5] bears the

wrong exponents if applied to polymers in a good solvent.

We have studied athermal colloid and polymer mixtureslntramolecular excluded volume, thermal attractions, and a
and considered the dilute limit of one species using a binaryself-consistent determination af(q) will be included in fu-
mixture approach, which treats the hard spheres and Gausste numerical studies, and in a number of cases the cor-
ian polymer coils on an equal footing. The macromolecularected scaling predictions have already been pointed out
liquid state theory uniquely addresses the structural correld35,48,58.
tions over the wide range of length scales from the polymer Colloidal dispersions containing added free polymer are
repeat unit size to the molecular sizes. Packing of haraften described by integrating out the polymer degrees of
spheres is handled using the reliable Percus-Yevick approxfreedom in order to derive an effective colloidal Hamiltonian
mation. Polymer specific effects are captured, which aris¢7]. However, for interacting polymers there exists no small
from the ability of the polymer coils to deform close to and parameter, and the induced many-particle interactions among
around the particles. Also, the appropriate polymer correlathe colloids do not generally terminate at a pairwise descrip-
tion length appears in the description because the formatiotion, and the polymer density dependence of the parameters
of a polymer mesh is captured. The polymer specific effectén the effective interactions cannot be neglected. Both as-
become important as soon as the size of the coils is naumptions enter the description of polymer-colloid mixtures
negligible relative to the colloid radius. using effective pair potentials like the Asakura-Osawa model

The comparison of the-PY approximation with rigorous [1,4], and are justified only for low concentrations of poly-
field-theoretic results in the dilute colloid limit presented in mers much smaller than the colloid particles, and preferrably
Sec. V serves to validate our approach, which offers thalissolved in® solvents that mimimize the excluded volume
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interaction. The discussion of semidilute polymer solutions ACKNOWLEDGMENTS
in Sec. V clearly identifies the importance of the density

dependent polymer blob size or mesh width, which also apBelloni, S. Egelhaaf, E. Eisenriegler, M. Schmidt, and R.

pears in® solvents[44]. The importance of induced many- gaar M.E. was supported by the Deutsche Forschungsge-

body interactions, which naturally are contained in the preineinschaft under Grant No. Fu 309/3 and through the SFB

sented binary mixture approach, was discussed in Ref$g3 K S'S. was supported by the U.S. DOE Division of

[6,35]. Treatments of binary mixtures of spheres have beefyaterials Science Grant No. DEFG02-96ER45539 through

used to describe the colloid-polymer mixtures, replacing thehe UIUC Materials Research Laboratory.

polymer coils by spheres of equal or similar size and neglect-

ing their direct interactiong“phantom sphere models” APPENDIX A: FACTORIZATION OF THE INTEGRAL

[5,8]. These capture induced many-body interactions but ne- EQUATIONS

glect the deformability of polymers around particles and the

crossover of the relevant polymer length scale from the coil Three-dimensional Fourier transformations leading to

size to the blob size when reaching semidilute concentraf(q) of functionsf(r) depending on the radiusonly shall

tions. Whereas these effects had been well appreciated whée simplified to one-dimensional ones as follows:

adding dilute particles to polymer solutions, their study in

concentrated particle solutions in the present approach ?(q)=27rfw drelar F(r), where

clearly reveals their importance whenever the size of the —

polymer coils is not negligible. Their description in recent

“soft-colloid” approches to polymers is yet unclegs7,58. T = °°d

An interesting quantity in this context is the free energy cost (= flrl ssis).

for adding polymers to hard sphere fluids because this is the

central input for the widely used free volume theory of

Lekkerkerkeret al.[5]. As Fig. 7 shows polymer deformabil-

ity leads to strong deviations compared to results based on Inserting Eq(12), the first equation of Eqs14) becomes

replacing polymer coils by hard spheres. -
A central ingredient of the present approach consists in . ) i,

enforcing thermodynamic consistency for the polymer inser- hip=¢ (1+\292)(1+ £297) '

tion chemical potentials,up|gp:0. The length scale. over

which polymer segments are allowed to rearrange close t@hich suggests an ansatz fot of the form

the particles is determined from equating expressions for

oup from long wavelength and from local packing informa- =s _ —ia2( 4 (1] +iaé)0

tion. Although the latter compares favorably with exact re- CiaQ)=2me T (UatiAqua) +(1+1gM)(1+19£)d:1Aa).
sults for dilute systems, quantitatively we consider the (A3)

former coarse-grained approa¢icompressibility route” to This shifts the problem of findinﬁz(r) for —t<r=!to

be more reliable, and also preferentially use it for other ther - ; .
modynamic quantities within the present approach. Our reat-he problem of finding theWiener-Hopf factor function

soning rests on three observations. diAr), where
(i) The used scaling law approacthread modelto se- 112
midilute polymer solutions is coarse grainadpriori, so a alz(q)=2wf dr €'9qyH(r), (A4)
zero wave vector thermodynamic route is natural. Recently it -2
has been connected to a self-consistent Gaussian field theory .
[59]. ind %2@20 elsewhere. From the required symmetry,
(i) The compressibility route leads to thermodynamic re-c3,(q) =ci,(—q), and Eq.(A3), follows the continuity of
sults far less dependent on the specific closure as can be segf} at the upper boundary,
by comparing the presemh-PY with previous PY results
[20,40,41]. 1
(iii) In a microscopic calculation the universality, in field- qn(i) =0. (AS)
theoretic sense, of the long wavelength structure could be
shown explicitly [47], in contrast with the local structure |nserting Eq.(A3) into Eq.(A2) leads to
route where microscopic parameters remained as prefactors.

We gratefully acknowledge fruitful discussions with L.

(A1)

1. The limit ¢.—0

(A2)

In the present context this implies that a full PRISM calcu- (1—igN\)(1—iqé)hys(q) — E201(q)

lation could lead to a local matching length in Eg9) de- _

pendent on the excluded volume size. Thermodynamic con- 2m&Pe (U tikgu,) "
sistency, nevertheless, should prove a useful concept also for  (1+igh)(1+ige) (A6)

the description of other systems, like polyelectrolyte mix-
tures[52], where PRISM-based numerical approaches havevhere by simple inspection the right-hand side has no pole in
already given interesting results. the lower complexq plane, 3g<0. Thus forr>—3% the
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Fourier-back transform of EGA6), remembering Eq(Al),
can be performed and leads to

(1+N0,) (14 £ Nyalr) = E2q1(r)  for r>— %
(A7)

Forr=1, this leads to Eq(15) and in the overlap region, the
excluded volume condition gives

1 1
r+N+&=¢g2q;,(r) for —5<r<s, (A8)

2

which can easily be integrated using E45) and provides
the initial condition for the derivatives df,, atr=3 men-

PHYSICAL REVIEW B4 021514

EIzz(Q)
1-i\qg

2TW
1+ 1292

Oz — Q) B @pé?

E:22((1):

X[a12<q>+2wze*“*’2][a12<—q)+2wzéq’2]
1+\%g?

(A13)

where the requirement of absence of a term of the forg 1/
for g—o, which would correspond to a divergence,(r
—0)~1/r, determines the constant from the value ofg,,
atr=0,

(Ppgz >
260

w
§=q22(0)+ (A14)

tioned in the main text. Also the zero wave vector value OfThe ansatz EqA13) is useful because it cancels a number

the direct correlation function in Eq16) follows from Eg.
(A3) and the symmetry requirement af, which fix

S22+ FNA(1+29)
52

ETN
y Va=m— 5.

3
(A9)

Ua

Inserting the ansat@3) at —q into the second equation of
Eq. (14) leads to

hiA @) e, [ 279U, —iNqu,)
1+12g?

+<1—iq§>q12<—q>), AL0)

(1+ig\)

of the poles in the lower complexhalf plane in Eq(A10).
The required short range of the direct correlation function,
C(r>1)=0, however, at first sight is violated by Eq.
(A13), which appears to indicate an exponential tail,
rc,y(r)=constx e~ " for |r|>1. Requiring its prefactor to
be zero, i.e., requiring the residues of the rhs of @d.3) at

g= *i/\ to vanish, fixes the initial value of the factor func-
tion,

10
0220)= Tfo dr e’ g,y(r)

(Ppgz

N go[alz(_i/)\)alz(i/)\)

+

+2mze’@q o —i/N) +27ze Y@ q i/N)],
(A15)

where Eq.(A6) shows that the last term on the rhs has nowhich is a linear equation in,,(0). Unfortunately, the full

pole for Jq<0 except for a single pole a=—i/\. Intro-
ducing the constants

_ AUatva)

AUatva) doe_2t
T 20+ andv==—12

(A11)

U=2z—U,,

also the first term on the rhs of EGA10) can be decomposed

expression foig,,(0) turns out rather complicated and only
simplifies if the fact that <1 holds is recalled in order to
neglect corrections of the ordé(e ).

The factorization of,, expressed in EqA13) simplifies
the Fourier-back transformation of E@A10), as the poles in
the lower complexg plane were identified with Eq$A11)
and(A13). Thus forr >0 one finds after Fourier-back trans-
forming that

into poles and zeros in different half planes. On the left-hand

side of EQ.(A10), ascy(r) vanishes for>1, its factoriza-
tion can be achieved using a constardnd an undetermined
function g,5(r), which vanishes outside the range=f=<1,
and whose Fourier transform is given by

~ 1 )
Q22(Q):27J0dr €' g (r). (A12)

Respecting that,, is a symmetric function ofj, the follow-
ing ansatz is required:

~ ® ~
(1+Ndp)hplr) + §—§<u+vwr>hlz(r— 3)=0quAr)

(A16)

holds, which proves Eql7) and, together with Eq(A15),

also proves Eq(18) becauseay,,(1)=0s(1)/\. In the over-
lap region, it leads to

for 0<r<1.
(A17)

’ ¥p u
Oo(r)=r+A+—_—|ur—s+uvA
&o 2
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The changes in the contact value upon adding more colloidéfrom the discontinuity ofy;, at r=3, the initial condition
particles, i.e., Qgcp/agcﬂgczo, can be determined in an ex- (22) results. Solving for the parameters

plicit form from the Wiener-Hopf factorization of the full

nonlinear equationgs0].

(A &) {0~ pbot A[1+28— d(1-450) ]}

U,=
- (1- )%
2. The limit ¢,—0
For ¢,— 0, the colloid structure factor agrees with the PY N+ &
solution for hard spheres, which can be written in terms of Ly (A23)

Baxter’s factorization function ggi2]

St =[1- 0o~ DI[1— o)), where
~ 1 .
qzz(q)=27rfo dr g, (r)e'dr
1 A _
=277Ldr(§(r2—1)+8(r—1) e'd" (A18)

with the coefficientsA=,[(1+2¢.)/(1— ¢.)?] and B
=0,[—3¢/(2/(1— ¢.)?)]. The first equation of Eqg20)
can be simplified with the ansatz

CSAQ) = (1+iq&e) (1+iq\)dA(q)
+e 91— quq)]2m(up+ighuy), (AL9)

as from Baxter’s solution it is known thdtlL—q,,(q)][1
+92ﬁ22(q)] has no poles fodg<<0. The functionq;(r)

again is assumed to vanish outside the overlap region such

that Eq.(A4) holds. The required symmetry @f,(q) and
the known properties af,, further show that Eq(A5) holds
and thatv,=é&y0.(—3) and up=—2m0(0)Av,+v,(1

+2N+ AN/ &p). Inserting Eq.(A19) into Eq. (20) and closing
the Fourier integrals in the lower complephalf plane thus
leads forr>—3 to

(1+ &00,)(1+ N3, )hyor)
) ) 1/2 _
=§&5012(r) +12¢:&; f_ mds GhoS)hoy(r—s).
(A20)

This leads to Eq(21) for r>3 as fij(r)= —arﬁij(r) for r
>0. Within the overlap region, the equation determining
follows:

1/2
r+§o+x=Eéqiz(r>+12¢cééf_mds AL (r—9),
(A21)

which is solved by the result given in E3) with param-
eters

N+ &g

1-¢(1-6A—6&))
a= =——.
(1-¢o)&o

(1— )28

(A22)

one can obtain Eq24) from Eq.(A19). The second equation
of Egs.(20) can be rewritten upon insertion of EGA19),

c & o
Toarag)? g
_6dcts  hifa)

m  (1—ig\)(1—igép)

27e 1V 1—qy(q) ](Up +igNvp)
(I+igh)(1+igéo)

x| gga(a)+

(A24)

Considering the explicit expression fdr(q) from Egs.
(20), (A18) and(A19),

hia)=hi(—q)
_ €612 — )
[1-0x =) I[1—gx(a)](1+igN)(1+igéo)
L 2mEe Uy ighvy)
[1- 0@ ](1+ 02N (1+0%E))

(A25)

one recognizes that the first term of E@25) multiplied

with [1—q,,(q)] contributes no poles in the lower half
plane. Thus the poles fdfiq<0, which are the only ones
contributing forr >0, from the second part of E¢A24) can
be identified and characterized with parameters

_ 3céoh _
TR L
_ 3.8

Zey=————— 5 (Nvp—UpEd),
O (n— )N+ E? DD

(A26)

and zg =7¢ —Cuéo(N— &)/l . From Eq.(A24), then,
Eq. (25 follows by transformation and differentiation. The

last unknown quantityc;,(q=0), can be obtained from Eq.
(A24) because the rhs vanishes as?(@8)/q® for q—x, as

can be seen from Eq&0) and(A20). Therefore, the discon-
tinuity of the third derivative at =0 of the transform of

w3Cyy needs to be balanced loy; ,
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€12(0)
2=
P

I 0= — 7 12(1) ], o= (A27)

o

which together with Eq(25) fixes the polymer excluded vol-
ume parameter as given in E@6).

The change in the colloid-contact value upon adding poly-
mers, @gcc/agp)|ep:0, can be obtained from the equations
at finite density and leads to a rather unwieldy expression
[60]. For this work, only its limits are required:
(&gcclagp)|ep:0=0(§§) for small &, and when terms of

O(\?) are neglected

39¢c(1) (28, 2N 1+24¢. FIG. 10. Colloid second virial coefficie&S in units of 27/3 as
Iep B - m + f_o m for fo—ce. a function of the polymer concentration for various size rafipas
0p=0 ¢ ¢ labeled. The solid lines are the compressibility results from Fig. 5
(A28) whereas the dashed lines give the corresponding HNC results. The
inset presents the latter in a larger window, showing their drop to
APPENDIX B: STEPS IN THE DETERMINATION OF A large negative values for polymer concentrations far above the over-

_ . . lap one.
In the limit £;>1 one can use the physically motivated P

expectation thah becomes small compared & and is of  colloid-polymer interaction, which correspondsie 0, and
the order of the colloid diameter. With the ansatz the HNC closurd61] or for the colloid correlations. Study of
=A(¢,) for £&,—o, the expressions in Eq$22) and (24)  the latter is motivated by the known deficiencies of the PY
simplify. With Eq. (A28), which entails a further expansion closure for mixtures of hard spheres, which gpartially)

in A<1 up to linear order, the contact route expression Eqcorrected by the HNC closui@1].

(10) becomes The result for the colloid pair correlation function using

the HNC closure can easily be obtained from thé?Y re-

be 1+ 2x sult via[40]
NBouP|, —o—2£502° f dx———— -

p ey ¢ 0 A(X)X2/3(1_X)2 g?g‘c(r)=egCCPY(r)71 for r>o.. (Cl)

©oag? 2,3f¢cd e 12 Becausegl."Y(r)—1 and the connected quantigW(q)

Hodbe 0 xx (1—x)2 =gpc§p(q)spp(q) in Eq. (14) can be identified ag-ourier

transform of the polymer induced potenti§62], the HNC
x |13 1+ 2x closure agrees with the exact virial expression for colloidal

+2 5. A(X)m - (B1)  spheres interacting with thigffective pair potential and the

o./Ry—> blob scaling mean-field resul{80]. From Fig.
By multiplication with powers of¢i’3 and differentiation, 10 one deduces that, as discussed in Sec. \ntfeY results

this expression can easily be turned into an ordinary differ@® not reliable fow>¢ (i.e., small size ratiog, or higher

ential equation forA (&), whose asymptotic solutions are polymer conc_entratior)sbecause the _Iine_arization in Eq.
given in Eq.(30). (C1) underestimates the strong attraction in these cases. For

larger polymers, however, in agreement with the consider-
ation of thermodynamic consistency in Sec. V, the PY linear-
ization of Eq.(C1) is qualitatively and even quantitatively
appropriate. The minimum iB5 at the overlap concentra-

The failure of thermodynamic consistency in the colloid tion, as well as the semidilute scaling law, are present in the
second virial coefficienB$ for situations where the effective HNC (and\=0, PY [40]) results also. The closer quantita-
colloid pair potential is strong warrants a comparison withtive agreement of the HNC results foB5 with the
results obtained with other closures. Because of previousompressibility-route results withim-PY is one of the
polymer-colloid mixture work in Refg[40,41] we consider prime reasons we favor this route Ed.9), over the virial-
two alternative approximations: the PY closure for thetype route, Eq(41).

APPENDIX C: COMPARISON OF B§ FROM OTHER
CLOSURES

[1] S. Asakura and F. Oosawa, J. Chem. P%5.1255(1954); J. [4] A.P. Gast, C.K. Hall, and W.B. Russel, J. Colloid Interface Sci.

Polym. Sci.33, 183(1958. 96, 251 (1983.
[2] A. Vrij, Pure Appl. Chem48, 471(1976. [5] H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A.
[3] J. Traube, Gummi-Ztg39, 434(1925. Stroobants, and P.B. Warren, Europhys. L2@. 559 (1992.

021514-18



MACROMOLECULAR THEORY OF SOLVATION AND . . . PHYSICAL REVIEW E64 021514

[6] E.J. Meijer and D. Frenkel, Phys. Rev. L&, 1110(1991); J. [31] P.G. de Gennes, C. R. Acad. Sci. P&&8B, 359(1979.
Chem. Phys100, 6873(1994; Physica A213 130(1995. [32] T. Odijk, Macromolecule29, 1842 (1996; J. Chem. Phys.
[7] M. Dijkstra, J.M. Brader, and R. Evans, J. Phys.: Condens. 106 3402(1996; Physica A278 347 (2000.
Matter 11, 10 079(1999; M. Dijkstra, R. van Roij, and R. [33] R.P. Sear, Eur. Phys. J. B 313(1998.

Evans, Phys. Rev. B9, 5744(1999. [34] H.M. Schaink and J.A.M. Smit, J. Chem. Phyd)7, 1004
[8] A.A. Louis, R. Finken, and J.P. Hansen, Europhys. L4, (1997

741 (1999. [35] M. Fuchs and K.S. Schweizer, Europhys. Létt, 621 (2000.
[9] M. Schmidt, H. Laven, J.M. Brader, and R. Evans, Phys. Rev. [36] K.S. Schweizer and J.G. Curro, Phys. Rev. L&& 246

Lett. 85, 1934(2000). (1987).

[10] J.M. Brader and R. Evans, Europhys. Ld®, 678 (2000. [37] K.S. Schweizer and J.G. Curro, Adv. Polym. Sti6 319

(1994.
[11] :.;;(/\f;rgrgn, S:M. llett, and W.C.K. Poon, Phys. RevSZ [38] K.S. Schweizer and J.G. Curro, Adv. Chem. Ph®8, 1
: . . (1997.
[12] D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett[gg] D. Chandler and H.C. Andersen, J. Chem. PHy&. 1930
81, 1330(1998. (1972
[13] R. Verma, J.C. Crocker, T.C. Lubensky, and A.G. Yodh, Phys.[4o] A.P. Chatteriee and K.S. Schweizer, J. Chem. PH@9
Rev. Lett.81, 4004(1998; Macromolecules83, 177 (2000. 10 464(1998; 109, 10 477(1998.
[14] F.L. Calderon, J. Bibette, and J. Biais, Europhys. L28.653  [41] A.P. Chatterjee and K.S. Schweizer, Macromolec@2s923
(1993. (1999.
[15] S.M. llett, A. Orrock, W.C.K. Poon, and P.N. Pusey, Phys. Rev.[42] J.P. Hansen and I.R. McDonal@heory of Simple Liquids
E 51, 1344(1995. (Academic Press, London, 1986
[16] R. Tuinier, E. ten Grotenhuis, C. Holt, P.A. Timmins, and C.G. [43] D. Chandler, inStudies in Statistical Mechanicedited by
de Kruif, Phys. Rev. B0, 848(1999; R. Tuinier and C.G. de E.W. Montroll and J.L. LebowitZNorth-Holland, Amsterdam,
Kruif, J. Colloid Interface Sci218 201(1999; J. Chem. Phys. 1982, Vol. VIII, p. 274.
110, 9296(1999. [44] P.G. de GennesScaling Concepts in Polymer Physi&ornell

[17] X. Ye, T. Narayanan, P. Tong, and J.S. Huang, Phys. Rev. Lett.  University Press, Ithaca, 1979
76, 4640(1996; X. Ye, T. Narayanan, P. Tong, J.S. Huang, [45] K.S. Schweizer and J.G. Curro, MacromoleculZks 3070

M.Y. Lin, B.L. Carvalho, and L.J. Fetters, Phys. Rev.5§ (1988; 21, 3082(1988.
6500(1996. [46] K.S. Schweizer and J.G. Curro, Chem. PH$9, 105(1990.

[18] A. Moussad, W.C.K. Poon, P.N. Pusey, and M.F. Soliva, Phys.[47] M. Fuchs, Z. Phys. B: Condens. Matte®3 521 (1997).

Rev. Lett.82, 225(1999. [48] M. Fuchs and M. Miler, Phys. Rev. B60, 1921(1999.

[19] R. Tuinier, J.K.G. Dhont, and C.G. de Kruif, Langmuii6, [49] K.S. Schweizer, E.F. David, C. Singh, J.G. Curro, and J.J.
1497 (2000; K.-D. Horner, M. Tgper, and M. Ballaufjbid. Rajasekaran, Macromolecul28, 1528(1995.

13, 551 (1997; W. Weiss, K.-D. Honer, and M. Ballauf, J. [50] T.L. Hill, Statistical MechanicsMcGraw-Hill, New York,
Colloid Interface Sci213 417 (1999. 1956.

[20] A.M. Kulkarni, A.P. Chatterjee, K.S. Schweizer, and C.F. Zu- [51] P.G. Khalatur, L.V. Zherenkova, and A.R. Khokhlov, J. Phys. Il
koski, Phys. Rev. Lett83, 4554(1999; J. Chem. Phys113 7, 543 (1997; N.P. Shusharina, P.G. Khalatur, and A.R.
9863(2000. Khokhlov, J. Chem. Phy<l13 7006(2000.

[21] I. Bodna and W.D. Oosterbaan, J. Chem. Ph{€6, 7777 [52] P.G. Ferreira, M. Dymitrowska, and L. Belloni, J. Chem. Phys.
(1999. 113 9849(2000.

[22] J. Dzubiella, A. Jusufi, C.N. Likos, C. von Ferber, Hvien, J.  [53] L. Schder, Excluded Volume Effects in Polymer Solutions
Stellbrink, J. Allgaier, D. Richter, A.B. Schofield, P.A. Smith, (Springer, Berlin, 1999
W.C.K. Poon, and P.N. Pusey, Phys. Rev6& 010401R) [54] R. Tuinier, G.A. Vliegenthart, and H.N.W. Lekkerkerker, J.
(2001). Chem. Phys113 10 768(2000.

[23] N.A.M. Verhaegh, J.S. van Duijneveldt, J.K.G. Dhont, and [55] Failure to recover the 0.40 exponent is not a failure of PRISM
H.N.W. Lekkerkerker, Physica 230, 409 (1996. but rather the consequence of the use of a Gauss{a).

[24] I.D. Robb, P.A. Williams, P. Warren, and R. Tanaka, J. Chem[56] M. Fuchs and K.S. Schweizer, J. Chem. PHy@6, 347(1997.
Soc., Faraday Tran81, 3901(1995. [57] A.A. Louis, P.G. Bolhuis, J.P. Hansen, and E.J. Meijer, Phys.

[25] E. Eisenriegler, A. Hanke, and S. Dietrich, Phys. Re\64: Rev. Lett. 85 2522 (2000; P.G. Bolhuis, A.A. Louis, J.P.
1134(1996. Hansen, and E.J. Meijer, J. Chem. Phi/s4, 4296(2001).

[26] E. Eisenriegler, Phys. Rev. &5, 3116(1997). [58] F. Eurich and P. Maas, J. Chem. Phy&4, 7655(2001).

[27] A. Hanke, E. Eisenriegler, and S. Dietrich, Phys. Re\o®&  [59] D. Chandler, Phys. Rev. &8, 2898(1993.

6853(1999. [60] M. Fuchs and K.S. Schweizéunpublishedl

[28] E. Eisenriegler, J. Phys.: Condens. Matt@r A227 (2000. [61] R. Dickmann, P. Attard, and V. Simonian, J. Chem. PHy¥,

[29] E. Eisenriegler, J. Chem. Phykl3 5091 (2000. 205(1997.

[30] J.F. Joanny, L. Leibler, and P.G. de Gennes, J. Polym. Scil62] C. Grayce and K.S. Schweizer, J. Chem. Ph80, 6846
Polym. Phys. Ed17, 1073(1979. (1994.

021514-19



