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Macromolecular theory of solvation and structure in mixtures of colloids and polymers
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The structural and thermodynamic properties of mixtures of colloidal spheres and nonadsorbing polymer
chains are studied within a general two-component macromolecular liquid state approach applicable for all size
asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concen-
trated, are presented and compared to field theory and to models that replace polymer coils with spheres.
Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling
laws where available, important differences from ‘‘effective sphere’’ approaches are found for large polymer
sizes or semidilute concentrations.
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I. INTRODUCTION

Mixtures of dispersed spherical particles and nonadso
ing polymers may be viewed as a model system for a w
variety of materials encountered in food products, biologi
systems, or technological applications. In these systems
‘‘depletion attraction’’ is always present because it has
purely entropic and universal origin. Its consequences
most clearly be studied in mixtures of colloidal hard sphe
and polymer chains made up of hard units where only
entropic consideration of the packing of particles restric
by steric or excluded volume constraints enters.

Because of the fundamental nature of the depletion att
tion, it has been studied theoretically since the pioneer
work of Asakura and Oosawa@1# and Vrij @2#. Moreover, its
effect on the phase behavior had been observed much e
@3#. The phase diagram of colloid-polymer mixtures has be
constructed using the Asakura-Oosawa pair potential in
effective one-component thermodynamic perturbation ca
lation @4#, within a two-component dilute polymer free vo
ume approach@5#, and also with computer simulations@6,7#,
the latter based on specific models originating in Refs.@1,2#.
The Asakura-Oosawa model consists of replacing the p
mer coils with effective spheres that can freely interpenet
each other but not the colloidal spheres. This model has b
further treated by liquid state theory@8#, has been extende
to nonhomogeneous situations@9,10# and to perturbatively
include polymer nonideality@11#. The forces it predicts for
dilute and rather large colloidal spheres have been meas
directly @12,13# and phase diagrams for colloidal spheres
preciably larger than the polymers have been obtained,
agree semiquantitatively with theory@14–16#.

More detailed experiments on the colloidal correlatio
@6,17–19#, measurements of the second virial coefficie
@20#, and quantitative tests of the phase diagrams for la
polymer sizes@15,18,19,21–23# have, however, detecte
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polymer correlations that are not contained in the mentio
approaches. Also, for small spherical surfactant micelles@24#
the dependence of phase separation on polymer size is o
site to predictions of colloid approaches@4,5#. There are at
least two reasons for these discrepancies. First, polymer c
can deform close to particles and can thus fit into void spa
more effectively than spheres. Second, for higher polym
concentrations the coils start to overlap and the relev
polymer correlation length crosses over from the coil rad
to the size of a mesh in the formed transient network. B
effects are important if the polymer coils are not negligib
small compared to the particles and both are neglected in
described theoretical approaches. The effects have long
understood from field-theoretic approaches to polymers
the limit of dilute colloidal particles. The deformability o
the polymer coils affects the depletion layer of polymer se
ments close to particles, the resulting insertion free energ
and the induced colloid pair interactions@25–29#. For semi-
dilute polymer suspensions the depletion layer and the
duced interactions were obtained for both large and sm
colloids @27–33#. Yet, except for in a highly idealized mean
field thermodynamic perturbation calculation of hard sphe
by Schaink and Smit@34#, polymer field-theoretical ap-
proaches have not been extended to finite colloid concen
tions.

Recently we proposed a macromolecular liquid st
theory for mixtures of arbitrary polymer to colloid size ratio
@35#, which, although it is not rigorous for dilute system
presents a viable and first principles approach for finite d
sities. It is unique in its applicability to all parameter rang
concerning densities and sizes, and is a macromolecular
eralization@36–38# of the interaction site description intro
duced by Chandler and Andersen for small rigid molecu
@39#. This generalization has proven rather successful
pure especially dense polymer systems and polymer all
Some results for dilute particle mixture systems have b
obtained within a simplification of the approach@40,41# and
could rationalize several surprising aspects of measured
ond virial coefficients of small proteins@20#. Also, light scat-
tering measurements of the colloid liquid structure could

ta
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described semiquantitatively over all length scales with
adjustable parameters@35#.

In the present paper we analyze in detail the low-den
limits of this macromolecular approach. The reasons
threefold. First, by looking at polymer solutions containi
few colloidal particles, it is possible to compare with exa
field-theoretic results and thus to test the approach. Sec
by considering dilute polymers in a hard sphere solvent i
possible to make contact with the previous Asakura-Oosa
type approaches. Third, in these limits fully analytical so
tions of the nonlinear integral equations description are p
sible and provide insight into the theory, which also appl
to the higher concentration states.

A conceptually new closure~approximation! for the direct
correlation function describing the packing of polymers clo
to repulsive walls or around hard colloidal spheres has b
introduced in@35#, which entails a medium-ranged colloid
polymer segment effective interaction. To capture the k
physics the latter is required within the polymer referen
interaction site model~PRISM! approach since a preavera
ing approximation for the single-polymer-chain form fact
is employed for tractability reasons. In inhomogeneous s
tems, however, the single-polymer form factor depends
the distance of the polymer chain from interfaces or inhom
geneities. Considering a fluid of random walk polyme
Gaussian intramolecular correlations apply. The numbe
intersections of a random walk with a plane scales asAN,
where N is the number of steps or polymer repeat un
Without rearrangements, the number of contacts with a
pulsive wall would scale identically, as the excluded volum
constraint could be satisfied by just mirror inverting the ov
lapping polymer strands. This result follows from PRIS
with the most simple excluded volume closure~of the
Percus-Yevick form! @40#. Close to the repulsive wall, how
ever, the~Gaussian! intramolecular polymer correlations dif
fer from the ones in the bulk solution as translational entro
can be gained by reducing the number of contacts with
wall to O(1), asrequired for recovery of the ideal gas equ
tion of state from the wall virial theorem. In order to descri
the inhomogeneous system with one homogeneous poly
intramolecular structure factor, the rearrangements close
colloidal particle need to be captured by an effective collo
polymer interaction that extends across the range where
polymer segments rearrange. We proposed a molecular
sure convoluting the local~bare! segmental steric repulsio
with a Yukawa weight where the range, or nonlocality leng
calledl is determined from thermodynamic consistency co
siderations. On the segmental level the assumption of sh
ranged effective steric interactions entered into a Perc
Yevick style approximation@40,41#.

Thermodynamic consistency correlates the structure
local length scales with long wavelength fluctuations and
familiar concept in liquid state theories@42#. In the present
case, the polymer chemical potential at infinite dilutio
closely connected to the insertion free energy for adding
lute polymers to a particle fluid, is used to implement co
sistency as it provides one of the simplest measures of
tendency of colloids and polymers to mix. Moreover, th
quantity also determines the free volume, which is one of
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input quantities in the colloid theory most widely used f
large colloid to polymer size ratios@5#.

The outline of this paper is as follows. In Sec. II th
model of colloid-polymer mixtures is presented. Section
describes the solution of the integral equations in the t
low-density limits of interest. The thermodynamic cons
tency equations are solved and discussed in Sec. IV. Sec
V then presents the results and discussions for the struc
and thermodynamics of dilute colloidal particles in a po
mer solvent, while Sec. VI describes the opposite case
dilute polymer chains immersed in a hard sphere fluid. C
clusions are presented in Sec. VII, and three appendices
tain technical material and a discussion of alternative clos
approximations.

II. MODEL

The binary mixture shall be described by its~matrix of
partial! structure factorsŜi j (q), where the indexi 51 indi-
cates the polymer and 2 indicates the colloid componen
small molecule solvent is treated as a background continu
and enters only implicitly via the interaction potentials f
the polymers and colloids. In principle, all partial structu
factors are experimentally measurable by~labeling and! scat-
tering techniques. The total density fluctuations are deco
posed into single-molecule contributions, described by a~di-
agonal! intramolecular form factorv̂ i j (q)5v̂ i(q)d i j and
intermolecular correlationsĥi j (q) resulting in

Ŝ~q!5% v̂~q!1% ĥ~q!%. ~1!

An obvious matrix notation is used. The diagonal matrix
densities% i j 5% id i j gives the number density of colloida
particles and polymer segments. The pair decomposable
cluded volume or steric interaction prevents the particl
segments from overlapping,

gi j „r , 1
2 ~s i1s j !…50, ~2!

where s25sc is the colloidal hard-core diameter ands1
5sp is the excluded volume diameter of a single-polym
repeat unit~segment!. The intermolecular pair correlation
functionsgi j (r ) are trivially connected to the total intermo
lecular correlation functionshi j , gi j (r )5hi j (r )11. Carets
in Eq. ~1! denote Fourier-transformed quantities. The to
density fluctuations of the interacting fluid are decompos
into the single-molecule fluctuations and an interaction p
via a generalized Ornstein-Zernicke, or Chandler-Anders
equation@38,39,43#,

Ŝ21~q!5v̂21%212 ĉ~q!. ~3!

In a preaveraging approximation the single-polym
molecule density fluctuations

v̂p[v~q!5
1

N (
ab

N

^eiq•(ra2rb)& ~4!
4-2
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MACROMOLECULAR THEORY OF SOLVATION AND . . . PHYSICAL REVIEW E64 021514
are taken to be knowna priori. As the colloidal particle is
assumed to be rigid and solid, it acts as a point scatte
v̂c51, subject to the steric restriction, Eq.~2!. If the effec-
tive interaction potentials, the direct correlation function
ci j (r ) in Eq. ~3!, were taken to be the bare pair potentia
ci j (r )52Vi j (r )/(kBT), then Eqs.~1! and ~3! would corre-
spond to the random-phase approximation~RPA!, which is
one of the simplest liquid state approximations for~dense!
polymeric and simple fluids. Typically one finds that RP
solutions violate the excluded volume condition, Eq.~2!. In-
tegral equation approaches like PRISM go beyond the R
as they enforce the no-overlap condition Eq.~2! rigorously
and determine the direct correlation functions from se
consistency equations implementing the~physically! moti-
vated expectation that theci j (r ) are short ranged and vanis
beyond a few particle diameters. For the colloidal ha
sphere component this corresponds to the well-establis
Percus-Yevick~PY! approximation@42#

ccc~r .sc!50. ~5!

This closure and the excluded volume constraint, Eq.~2!,
together with the site-site Ornstein-Zernicke equation,
~3!, result in a coupling of density fluctuations at differe
wave vectors, thus leading to nonlinear integral equati
with a much richer mathematical structure than the sim
RPA. For the model of hard spheres, the only thermodyna
parameter is the packing fractionfc5(p/6)%csc

3 .
Detailed studies of the PRISM equations for homopo

mer solutions and melts@37,38# have established that th
polymer site-site direct correlation function to a good a
proximation decays to zero beyond the polymer repeat
size so that a correspondingly simple closure can be
forced,

cpp~r .sp!50. ~6!

Thus, the interaction between polymer macromolecules
made up of pairwise site-site segmental interactions, wh
are given by a spherically symmetric effective potenti
which follows from the excluded volume constraint, Eq.~2!.
Attractive interactions beyond the ‘‘athermal’’ model studi
here can be included@38,41#. Site averaged quantities ar
considered and therefore specific chain-end effects are
glected.

As discussed in the Introduction, the effective colloi
polymer interaction extends beyond the range of immed
overlap. This arises because of, and allows to accommod
the change of the polymer conformations close to colloi
particles. As the exact direct correlation function is n
known we suggested@35# a simple one-parameter extensio
of the PY closure~called modified PY,m-PY),

ĉcp~q!5
ĉcp

s ~q!

11q2l2
, ~7a!

with
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ccp
s S r .

sc1sp

2 D50, ~7b!

which enforces excluded volume on the local scale by fix
ccp

s (r ) from the excluded overlap condition, Eq.~2!, and
from the requirement of short-ranged segmental interactio
On physical grounds, because2kBT ccp

s (r ) describes inter-
actions on the segmental scale, one expectsccp

s (r ) to be
negative~repulsive! and to exhibit rapid variations~on the
segmental length scale! and smoother ones connected wi
the colloid size. In real space the closure clearly implie
smearing of the segment-colloid interactions over the d
tancel,

ccp~r !5E d3s
1

4pl2

1

ur2su
e2ur2su/lccp

s ~s!, ~7c!

where the PY closure forccp
s (r ) can be viewed as describin

unconnected polymer segments, and the~nonlocal! confor-
mational constraints on the segment packing~‘‘chain connec-
tivity’’ ! close to colloidal particles are captured by the spa
convolution.

The m-PY closure contains an undetermined parame
the lengthl, which can be expected to vary nontrivially wit
the physical system parameters, like densities or size ra
As it captures the rearrangements of the polymers stra
close to a colloidal particle, its magnitude should be of t
order of or smaller than the polymer correlation length~i.e.,
radius of gyrationRg for dilute systems, blob diameter o
mesh size for semidilute conditions! and/or the colloid size.
Also, the polymer conformational changes, and hencel, will
depend on the volume taken up by the colloidal spheres
order to achieve a parameter-freea priori description, ther-
modynamic consistency shall be enforced to determinel
uniquely. The implementation of this well-known conce
within liquid state theories starts from the observation t
the PY closure@38#, l50, leads to results for the solutio
free energies obtained from the compressibility theore
(]2/]% i]% j )F

ex52kBTĉi j (0), whereFex is the excess free
energy per unit volume, which compare favorably with fiel
theoretic results where available@40#. Thus, the excess
chemical potential for inserting polymers into a hard sph
fluid, where dm i5(]/]% i)F

ex, as obtained via the ‘‘com-
pressibility’’ route provides a ratherl-insensitive reference
quantity since it emphasizes long wavelenth correlations.
pecially, the limit for vanishing polymer concentration sha
be discussed,

Nbdmp
(c)u%p5052E

0

%c
d%c8N ĉcp~q50,%c8!u%p50 , ~8!

whereb51/(kBT), and the expression per molecule is give
An independent, more local route to the insertion free ene
will lead to stronglyl-dependent results, thereby allowing
sensitive determination ofl from equating both expressions
The approach of thermodynamic integration introduced
RISM approaches by Chandler@43# shall be used as it con
nects the pair correlation functions on local distances to
4-3
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thermodynamic properties. The variation of the free ene
when turning on the interactions via the Mayerf function,
f ab

(z) :zP@0,1#° f ab
(z) , shall be used, wheref ab

(1) is the physical
function andf ab

(0) belongs to some known reference syste
here the Greek indices run over the colloid and the polym
segment sites. As only excluded volume interactions
present, and because the limit of vanishing polymer segm
size,sp→0, is of interest, the thermodynamic integration
chosen to take a mixture of polymers and colloidal po
particles of free energyF0 to the true mixture by growing the
colloidal particles,sc

(z)5zsc . From Ref.@43# one then eas-
ily finds

b~F2F0!5
p%c%psc

2 E
0

1

dz~sp1zsc!
2gcp

(z)S sp1zsc

2 D
12p%c

2sc
3E

0

1

dz z2gcc
(z)~zsc!, ~9!

where theg(z) are thez-dependent~e.g., via the volume frac-
tion of the colloid particles! pair correlation functions tha
are evaluated at the distances of closest approach. Equ
~9! expresses that the growing colloidal spheres have to p
against the pressure of the surrounding system~polymers and
colloids!, which—in a virial theorem analogy—is given b
the probability of contact on the surface. Immediately, o
obtains a second independent result for the chemical po
tial of Eq. ~8!, which, as argued, depends onl strongly as
the packing of polymer segments close to the colloidal p

ticles,gcp(
1
2 @sc1sp#), enters crucially,

Nbdmp
(g)u%p505

p%cscN

2 E
0

1

dz~sp1zsc!
2

3gcp
(z)S sp1zsc

2 D U
%p50

12p%c
2sc

3NE
0

1

dz z2
]gcc

(z)~zsc!

]%p
U
%p50

.

~10!

Even though it would be desirable to obtainl for all con-
centration ranges, its form especially for low polymer co
centrations is required. On the one hand, even small amo
of polymers added to colloidal systems can strongly aff
the phase diagram and colloid structure. On the other han
l ’s dependence on the polymer parameters is known t
scaling considerations allow reasonable extrapolations ol
into the semidilute region as will be shown in Sec. V. The
fore, the two expressions, Eqs.~8! and ~10!, for vanishing
polymer concentrations will be used to obtainl in Sec. IV.

III. SOLUTION IN LOW-DENSITY LIMITS

The specified model of colloid-polymer mixtures cove
all polymer and colloid density regions, and distances fr
the polymer repeat unit size~ca. 5 Å) up to the collective
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correlation length approaching phase separation~some mi-
crometers!. Since small amounts of nonadsorbing polym
can alter the structure and phase diagram of a colloidal
tem quite appreciably, simplification to consider rather lo
polymer concentrations is of initial interest. Under these c
ditions there opens up a mesoscopic window where poly
segments are well separated but polymer molecules ove
and interact strongly. Such solutions are called dilute
semidilute@44#, and treatment of this regime is most conv
niently done by performing the ‘‘thread limit’’@45,46#, where
the size of a polymer segment and the corresponding st
tical segment sizel p /A12 are taken to be negligibly smal
sp} l p→0. In order to retain polymer molecules with a fini
radius of gyrationRg , the number of repeat units is in
creased beyond bounds,N→`, such thatj0

25 l p
2N5Rg

2/2 re-
mains fixed. As has been shown by a rigorous solution of
PRISM integral equations in@47#, intermolecular excluded
volume remains active if in parallel the monomer density
increased,%p→`, such that the number of polymer mo
ecules per coil volume (;Rg

3) stays finite: wp

52p(%p /N)j0
3 is fixed. The reduced polymer concentratio

wp differs only by a numerical factor from the often use
polymer packing fractionhp5(4p/3)(%p /N)Rg

35%p /%p*
'wp/0.53, where%p* is the density when polymer coils sta
to interpenetrate. The mathematical thread limit of t
PRISM equations corresponds to a scaling law descriptio
the dilute-to-semidilute crossover of polymer solutions a
can be compared to field-theoretic scaling laws and res
@48#. In both cases only mesoscopic parameters, the poly
molecule density and coil size, enter and all microsco
parameters, likesp , l p , and%psp

3 , drop out. The effective
polymer-polymer interaction becomes of the Edwar
d-function type, cpp(r )5 ĉpp(0)d(r ), where the intermo-
lecular excluded volume parameterĉpp(0) follows self-
consistently from the no-overlap condition, Eq.~2!. Besides
its use for dilute and semidilute polymer solutions, expe
ence also has shown, when applying the thread limit outs
its rigorous range of validity, that it describes qualitative
adequately the spatially coarse-grained features of con
trated polymer solutions and melts@49#.

Two limits of the scaling function of the single-chain form
factor are known in general, and for Gaussian polymers s
plify to v(q50)5N and v(qRg@1)→(qlp)22. Note that
the self-scattering term, which is present in the fullv(q) of
Eq. ~4! for qsp5O(1), is notaccessible in the thread limit
In order to keep simple and analytically tractable equatio
the full intramolecular structure factor shall be approxima
by the standard Pade´ interpolation between the two asymp
totes,

v~q!'
N

11q2j0
2

. ~11!

As the single-polymer structure factor is an input to o
PRISM approach, the use of random walk statistics in
~11! for repelling coils can be considered an additional te
nical approximation in order to achieve analytical results.
order to capture effects of the nontrivial intramolecular c
4-4
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MACROMOLECULAR THEORY OF SOLVATION AND . . . PHYSICAL REVIEW E64 021514
relations ~‘‘swelling’’ and ‘‘self-avoiding-walk statistics’’!
caused by intramolecular excluded volume, Eqs.~1! to ~10!
could be solved numerically with an appropriatev(q) @48#.
Also, effects specific to semiflexible polymers and arisi
from local chain rigidity are neglected in Eq.~11!, but could
be incorporated into numerical studies.

In this section as well as in Sec. IV, in the appendices
in the figure captions, dimensionless units shall be chose
using the colloid diameter as unit of length,sc51. Then, the
length scale ratioj05Rg /(A2sc), the relative polymer con-
centrationwp , and the colloid packing fractionfc are the
only remaining physical parameters. Further notational s
plification is provided by defining S̄cc5Scc /%c , S̄pp

5( l p
2/sc

2%p)Spp , c̄cp
s 5ccp

s sc
2/ l p

2 , andv̄(q)5( l p /sc)
2v(q).

The limit of considering only~semi-! dilute polymer so-
lutions does not eliminate the nonlinearities of the integ
equations for the polymer and colloid structure. Insights i
the physics described by them-PY PRISM equations and
their full solutions can be gained by reducing one of t
densities further to a dilute limit where at most pairwise
rect interactions of the diluted species can occur. This line
izes the equations in the correlation functions of the dilu
species and thus, as the correlations of the majority com
nent are known, simplifies the analysis. These limits will
studied in the following, where in Sec. III, them-PY closure
parameterl still is kept arbitrary.

A. Dilute colloids

In the limit fc→0 the equations simplify as the colloi
particles do not alter the structure of the polymer fluid. T
collective polymer structure factor for Gaussian intramole
lar correlations within PRISM equals@38#

Ŝ̄pp5
j2

11q2j2
, ~12!

where the polymer correlation length crosses over from'Rg
at high dilution to the blob size or density screening len
for concentrations within the semidilute regime,

1

j
5

1

j0
1

1

j%
5

112wp

j0
. ~13!

Note that the neglect of microscopic length scales co
sponds to the assumption that the polymer concentration
Eq. ~13! are far smaller than melt densities, where segme
of different polymer chains start to pack densely~typically
'30240 % of melt density!.

The polymer segment profile close to a single colloid
particle and the resulting packing of two colloidal ha
spheres is described by linear equations
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ĥcp~q!5
ĉ̄cp

s ~q!

11q2l2
Ŝ̄pp~q!, ~14a!

and

ĥcc~q!5 ĉcc~q!1
wp

2pj0

ĉ̄cp
s ~q!

11q2l2
ĥcp~q!. ~14b!

Closed equations for the pair correlation functions follo
from Eqs. ~2!, ~14!, and ~5!–~7!. Even though these equa
tions can be solved by straightforward conversion to diff
ential equations, a simplified Wiener-Hopf factorization
Eq. ~14! is used in Appendix A because it is close to t
solution technique of the full equations for arbitraryfc and
wp ~to be published elsewhere!, and can be presented in
more concise way. In Appendix A 1 it is shown that the fun
tions f i j (r )5r „gi j (r )21… satisfy simple differential equa
tions. The one describing the polymer segment density p
file close to a single sphere is

~11l] r !~11j] r ! f cp~r !50 for r>
1

2
, ~15!

with initial conditions f cp8 ( 1
2 )5gcp8 ( 1

2 )/221521 and

f cp9 ( 1
2 )5gcp9 ( 1

2 )/25( 1
2 1l1j)/(lj), where a prime denote

a derivative. Also the direct correlation function at zero wa
vector is obtained from Eqs.~A3! and ~A9!,

ĉcp~0!5
2pj0

2

6Nj2
@116j112j216l~112j!2

112l2~112j!#. ~16!

For dilute polymer solutions, wp→0, the quantity
2N ĉcp(0) is the cross second virial coefficient describi
the mutual excluded volume between a hard sphere an
Gaussian polymer coil.

For the pair correlation function describing the probabil
of two isolated spheres in the polymer solution to be a
separationr, the differential equation is

~11l] r ! f cc~r !1
wp

j0
~u1vl] r ! f cp~r 2 1

2 !50 for r>1,

~17!

with initial condition f cc(1)115gcc(1). Theunknown pa-
rametersu andv follow from Eqs.~A9! and ~A11!, and the
initial value is given by the colloid pair contact value
infinite dilution, fc→0,
ated
gcc~1!511
wp~2j224l3~112j!14lj~112j!1l2@314j24j2# !

4j2j0

, ~18!

where corrections of the orderO(e21/l) were neglected. The contact probability for two colloids in principle can be calcul
4-5
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exactly withinm-PY, but the approximation to neglect co
rections ofO(e21/l) simplifies the expressions greatly, an
for realistic values,~see below! wherel, ~mostly !) 0.31,
introduces errors of at most a few percent.

From Eq. ~15! and the initial conditions, it follows tha
gcp(r ) consists of a superposition of two Yukawa tai
Aje

2r /j/r and Ale2r /l/r , where Aj.0 and Al,0 for l
,j, and that it describes a monotonous increase from zer
unity for 1

2 <r ,`. Similarly, Eq.~17! shows thatgcc(r ) is a
superposition of these two Yukawa tails~with constantsBj

and Bl) and of an additional secular termCle2r /l. Never-
theless, numerically it is found to decrease monotonously
all parameters.

Of interest is the second virial coefficientB2
c , which fol-

lows from the~colloid partial! compressibility and measure
the strength of the polymer induced pair potential@50#,

B2
c5

21

2 E d3r hcc~r !u%c50

5B2
HSF123E

1

`

dr r f cc~r !u%c50G , ~19!

where the result for hard spheres,B2
HS52p/3, expresses a

purely steric repulsion, and negative values ofB2 indicate
the presence of a net attractive effective interaction due
‘‘depletion.’’ One findsB2

c easily from the solution of Eq
~17! with initial value given in Eq.~18! @neglecting correc-
tions of orderO(e21/l)# and parameters in Eqs.~A9! and
~A11!. Forl50, the PY result of Ref.@40# is recovered. The
virial coefficient, as it still contains the parameterl, will be
discussed in Sec. V after the determination ofl from ther-
modynamic consistency.

B. Dilute polymers

In the limit of adding only a few polymers to a dense flu
of hard spheres, them-PY PRISM equations simplify to

ĥcp~q!5
v̄qĉ̄cp

s ~q!

11q2l2
Ŝ̄cc~q! ~20a!

and

ĥpp~q!5vq
2ĉpp~q!1

6fc

p

v̄ ĉ̄cp
s ~q!

11q2l2
ĥcp~q!, ~20b!

where the structure factor of the pure hard sphere fluid,Ŝcc ,
is given in PY approximation. The unperturbed length sc
characterizing the polymer correlations is given byj0 as for
an isolated polymer. Colloid mediated interactions arise
the polymer coil is forced to squeeze into the voids betw
the spheres. In Appendix A 2 it is shown that the functio
f i j (r )5r „gi j (r )21… satisfy linear integrodifferential equa
tions with known integration kernels. The average polym
segment density around colloidal spheres increases acc
ing to
02151
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~11l] r !~11j0] r ! f cp~r !512fcj0
2E

21/2

1/2

ds qcp~s! f cc~r 2s!

~21!

for r> 1
2 , where the initial conditions aref cp8 ( 1

2 )5gcp8 ( 1
2 )/2

21521 and

f cp9 ~ 1
2 !5gcp9 ~ 1

2 !Y 25
12fc12~l1j0!~112fc!

2lj0~12fc!
2

.

~22!

Here, the hard sphere functionf cc(r ) is known@42# and the
new factor function is given by

qcp~r !5
a

2 S r 22
1

4D1bS r 2
1

2D for 2
1

2
<r<

1

2
~23!

and vanishes outside this range; the parameters are give
Eq. ~A22!. Again, the direct correlation function at zer
wave vector, which is needed for the thermodynamic cal
lation, can be obtained in explicit form~see Appendix A 2!,

26N

p
ĉcp~q50!5

1

12fc
1

6~j01l!

~12fc!
2

1
12~l1j0!2~112fc!

~12fc!
3

1
24lj0~l1j0!~112fc!

2

~12fc!
4

. ~24!

The polymer pair correlation function follows from Eq
~A24! and ~A27! for r .0

~11l] r !~11j] r ! f pp~r !5zj0
e2r /j01zle2r /l

112fcj0
2E

21/2

1/2

ds qcp~s!~r 2s!

3@gcp~ ur 2su!21#, ~25!

where the initial conditions aref pp(0)50 and f pp8 (0)521,
and the parameters are given in Eq.~A26!. Clearly, by means
of the last term the colloidal spheres imprint their local pac
ing structure onto the dilute polymers. In order to explicit
calculate the pair correlation functions, numerical integrat
of Eqs.~21! and ~25! is most convenient.

Also of interest is the intermolecular excluded volum
parameter that describes a colloid modified effective inter
tion for polymer segments on different chains,

ĉpp~0!j0

28p l p
4

5
bj0

21zl1 z̄j0

l1j0
, ~26!

where the parameters are given in Appendix A 2. It simplifi
to ĉpp528p l p

4/j0 for the pure polymer system and is co
nected to the polymer second virial coefficient via
4-6
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B2
p52

1

2
ĥpp~q50!52

1

2
N2S ĉpp~0!1

6fc

p
@ ĉcp~0!#2Ŝ̄ccD ,

~27!

which becomesB2
p52 1

2 N2ĉpp(0)}Rg
3 when no colloids are

present.

IV. ENFORCEMENT OF THERMODYNAMIC
CONSISTENCY

The solutions for the structure of colloid-polymer mi
tures open up two very different calculation routes to
thermodynamic properties. One, via the long wavelen
fluctuations, termed ‘‘compressibility route,’’ is suggested
Eq. ~8! for the insertion free energy of polymers into ha
sphere fluids. The second, Eq.~10!, uses very local informa-
tion captured in the contact values of the pair correlat
functions. Within integral equation theories for the structu
of many-body systems, both results generally do not coinc
and in them-PY closure this aspect of ‘‘thermodynamic co
sistency’’ is used to determine the effective interactio
length scalel from equating both results.

The ideal gas result for adding point polymers,j0→0,
immediately follows from Eqs.~8! and ~24! and the obser-
vation thatl}j0 ~corresponding to the polymer appearing
an inpenetrable small sphere to the colloid! has to hold in
this limit: Nbdmp

(c)u%p5052 ln(12fc)1O(j0). This change
in translational entropy when dissolving a point polymer in
sphere solvent of packing fractionfc is connected to the free
volume fraction accessible to the polymer,e2Nbdmp5Vf /V
512fc . The free volume for finite colloid but vanishin
polymer concentrations is a central quantity in the ph
studies of the free volume approach by Lekkerkerkeret al.
@5#. In order to arrive at the same ideal gas limit from t
polymer-colloid contact probability in Eq.~10!, since
(]/]wp)gcc(1)u%p505O(j0

21) as follows from Eq.~18!, the
following result has to hold for the contact probability
polymer segments with the colloidal surface:

gcpS 11sp

2 D5
1

N

1

12fc
for j0→0. ~28!

The contact value should be microscopically small, vani
ing in the mesoscopic limitN→`. In the threadm-PY
PRISM limit described in Sec. II, where microscopic para
eters were scaled away, the colloid-polymer pair correlat
function agrees with this result. Thread PRISM correctly p

dicts on mesoscopic scales thatgcp(
1
2 )→0. In the case of

~semi-! dilute polymer solutions a scaling connection of t
segment-segment contact value to the mesoscopic sc
law description could be shown, which enabled one to e
mate the microscopically small contact value from an eva
ation of the mesoscopic pair correlation function at a mic
scopic separation@48#. From the parabolic polymer segme
density profile close to a colloidal particle and Eq.~22!, one
realizes that withinm-PY this again is possible. The mes
scopic pair correlation function~i.e., the threadgcp) evalu-
02151
e
h

n
e
e

s

e

-

-
n
-

ing
i-
-
-

ated at a microscopic separations̃p because ofgcp(
1
2

1s̃p/2)5 1
2 gcp9 ( 1

2 )s̃p
2 , predicts the correct scaling behavio

of the contact value, Eq.~28!,

gcpS 11sp

2 D5
1

2

s̃p
2

lj0

1

12fc
for j0→0, ~29!

and thus recovers the ideal gas result for the chemical po
tial from the ‘‘wall virial’’ route. Evidently, however, the
microscopic distance could only be calculated if the f
PRISM equations also including microscopic length sca
were solved. As this has not been achieved yet, in Ref.@35#

for simplicity the distances̃p
252l p

2 was chosen, because the
the distance over which pointlike polymers rearrange cl
to a colloid sphere becomes numerically identical to
polymer correlation length,l5j0, for j0→0. Note that this
holds for all colloid packing fractions and thats̃p has to be
chosen only once.

It is the major difference of them-PY closure to the pre-
viously studied PY description, wherel50, and~as can be
expected! to prior numerical solutions of the PRISM-PY
equations@51,52#, that thermodynamic consistency indmp is
possible in a scaling sense. Forl50 in the PY case, the
mesoscopic pair correlation function predicts a scaling of
colloid-polymer contact value asgcp(11sp/2)5s̃p /@j0(1
2fc)# for j0→0, thus violating Eq.~28! and the ideal gas
insertion free energy. Obviously, the PY closure overe
mates the segment density of polymers, even of an isola
polymer, close to walls or colloidal spheres, as a factorAN
too high contact probability is predicted. This comparis
justifies the motivation and the physical interpretation of t
m-PY closure in Sec. II. Additionally, the PY approximatio
l50 predicts a segment density profile, which increa
much more strongly,

gcp
PY~r !5F 1

j0~12fc!
1

214fc

~12fc!
2G S r 2

1

2D1OF S r 2
1

2D 2G ,
compared to

gcp~r !5
1

2
gcp9 S 1

2D S r 2
1

2D 2

1OF S r 2
1

2D 3G
from Eq. ~22!, and thus strongly underestimates the polym
induced depletion attraction. This follows since for sm
separation of two colloidal particles, PY predicts a line
increase of the polymer density in the gap, whereas the
rect @25,30# and m-PY result for Gaussian polymers is
quadratic increase.

Extension of the expansion for smallj0 leads to the
higher order resultl5j024j0

21j0
3L̃(fc)1•••, where the

dependence on the sphere fluid packing density indicate
anomalous behavior ofl for fc→1, i.e., one findsL̃(0)
516 but L̃(fc)→2144/(12fc)

2 for fc→1. As l is re-
stricted to positive values, a different expansion schem
required for high colloid packing fractions and for larg
4-7
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polymers or small colloidal particles. It is described in Appendix B. The calculation leads tol→L(fc) for j0→`, where

L~fc!→5
1

A511
20.80 . . .~fc1••• !, fc→0

1/3

A511
~12fc!10.78 . . .@~12fc!

21•••#, fc→1,

~30!
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which verifies the interpretation ofl as the range of polyme
segment rearrangement, because it is always less than
smaller of the two molecular sizes, and becomes vanishin
small if no free volume is available for the polymers. Exa
determination ofl from Eqs.~8! and ~10! for all parameter
values is difficult because thermodynamic integrations
required. Thus we proposed the approximation to interpo
between the known exact limits@35#,

l215j211
112fc

12fc

l1

sc
, ~31!

wherel15(A511), j5j0 for vanishing polymer concen
tration, and for convenience dimensional units are resto
This Pade´ approximation satisfies the thermodynamic cons
tency condition from Eqs.~8! and ~10! up to relative errors
of 15% for all parameter values, see Fig. 1. For small po
mers, l follows the polymer correlation length. For larg
single-polymer coils,l is expected to be determined by th
pure hard sphere fluid correlation length beyond which d
sity fluctuations are screened, which isfc dependent. The
result in Eq.~31! can be shown to be in excellent agreeme
with this intuitive idea.

The expression in Eq.~31! immediately suggests an ex
trapolation forl from its present calculation at vanishin
polymer concentration to finitewp . If the polymer correla-
tion length of the dilute situation,j0, is replaced with the full

FIG. 1. Polymer molecule excess chemical potentia
dmpu%p50, as functions of the size ratioj0 from the two different
routes used to enforce thermodynamic consistency for three co
packing fractions as labeled. The solid lines give the results fr
long wavelengths, Eq.~8!, the dashed lines the corresponding on
from local packing, Eq.~10!. The inset shows the relative error
which for all parameters are smaller than 15%.
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density dependent one,j, from Eq. ~13!, then l also is
known for fc50 but now arbitrary polymer concentration
wp.0. This replacement is suggested as the role of
single-polymer-molecule structure factor,v(q), in Eq. ~20!
is taken over by the collective one,Spp(q), if the densities
are changed accordingly. This standard procedure fr
polymer-scaling approaches thus substitutes the blob siz
density screening length in place of the chain size for se
dilute situations@44#. In Sec. VI, it will be shown that this
extrapolation achieves thermodynamic consistency for
insertion free energy of adding colloids to a polymer so
tion, i.e., for quite a different thermodynamic quantity
originally considered for the determination ofl. In Ref.@35#,
this way of extrapolatingl to finite polymer and colloid
concentrations was suggested and used withj
5j(fc ,wp ,j0) being the full polymer correlation length
which depends onfc , wp , andj0. In the two cases consid
ered here it simplifies toj(fc ,wp50,j0)5j0 and j(fc
50,wp ,j0)5j0 /(112wp), see Eq.~13!.

V. RESULTS FOR COLLOIDS DILUTED IN A POLYMER
SOLVENT

If only a small amount of colloidal hard spheres is d
solved in a polymer solution, then the structure of the po
mer fluid is not affected. The intramolecular density fluctu
tions or the form factors for the individual polymers,v(q),
are rather well understood from field theoretic considerati
@53#. PRISM describes the packing, i.e., the intermolecu
correlations of the polymeric macromolecules that are s
plified to Gaussian chain molecules in the present work. T
intermolecular pair correlation function exhibits the we
known ‘‘correlation hole,’’ which shows that polymer mo
ecules for entropic reasons softly repel each other. The
relation hole has a nontrivial structure on the length scale
the size of the molecule~radius of gyration! and also for
shorter distances, on the mesh or blob scale characterize
the density screening lengthj.

Close to the diluted colloidal particle the polymer se
ment density is less than in bulk resulting in a depletion la
of varying width. Its form is described by Eq.~15! and
shown in Fig. 2. The width is given by the polymer correl
tion lengthj as long as the particle is much larger. Only f
dilute polymer solutions, this correlation length agrees w
the polymer sizej0. In the semidilute region, it is given by
the blob size or mesh width. If the particle becomes sma
than the polymer correlation length, then the depletion la

,

id

s
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width crosses over to the particle diameter. This is shown
the inset in Fig. 2. If very small particles are immersed in
polymer solution, then the depletion layer has an additio
power law tail due to chain connectivity correlations, whi

becomesgcp(r @1)512( 1
2 11/l1)(sc /r ) for j→` @25#.

In the dilute polymer solution limit, the PRISM resu
compares rather well with field-theoretic calculations fro
Ref. @25#. While the width is of the same order in both r
sults, especially the small distance power-law increase of

density profile, gcp(r )5 1
2 gcp9 ( 1

2 )(r 2sc/2)21•••, can be
compared as it obeys a scaling law, where the~universal!
amplitude of PRISM~semi-! quantitatively agrees with the
known field-theoretic~FT! limits,

gcp9 S 1

2D→5
1

j0
2 ~PRISM!

1

j0
2 ~FT!, j0→0

2l1

sc
2 ~PRISM!

8

sc
2 ~FT!, j0→`.

~32!

The PRISM result for the polymer profile in Eq.~15! extends
into the semidilute concentration region where mean-fi
calculations for the case ofRg!sc are available@30#. Again,

the amplitude,gcp9 ( 1
2 )→1/j2 for j→0, agrees verifying its

universality@25,26#. Only in the case of very large polymer
m-PY overestimates the depletion effect by ca. 20% in
~32!. Figure 2 shows that the width of the depletion layer
semidilute solutions is set by the polymer correlation len
~for j!sc), and that the molecular sizeRg plays no role for
the depletion layer; this also is evident from Eq.~15! where
only the correlation length of the collective polymer fluctu
tions appear. Using an effective pair potential approa
@1,4,5# determined under dilute polymer conditions strong
overestimates the range of the depletion interactions in se
dilute polymer solutions.

The polymer induced depletion attraction becomes ap
ent from the colloid pair correlation function describing t
probability of two isolated colloidal spheres to be at a d

FIG. 2. Polymer-colloid pair correlation function,gcp(r ), exhib-
iting the polymer segment depletion layer close to an isolated
loidal sphere for various polymer correlation lengthsj as labeled.
The inset shows a double logarithmic plot of the widthw of the
depletion layer, defined bygcp(r 5

1
2 1w)5

1
2 , as a function ofj;

thin dashed lines mark the asymptotesw→1.66j (w→1.1) for j
→0 (j→`), respectively.
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tance r, Eqs. ~17! and ~18!. As seen in Fig. 3, for close
distances and especially at contact, this probability is
creased above the random value of unity. Thegcc(r ) de-
creases from the contact values, Eq.~18!, monotonically
without oscillatory features or layering. Thus, the effective
induced potential,bVeff(r )52 ln gcc(r), is attractive and
monotonic, and does not exhibit repulsive barriers. The c
tact value scales likegcc(1)21;wp /j0 in either limit of
very small or very large polymers, i.e.,j0→0 (`). The dis-
tance characterizing the decay ofgcc(r ) is closely connected
to the width of the depletion layer as seen in the inset of F
3, and both depend on the polymer parameters only via
nonlocality lengthl. The correlation between two colloida
particles that are much smaller than the polymer mesh w
falls off for large distances asgcc(r @1)→11(1
12/l1)2(p l p

2sc
2%p /r ) for j→`, indicating a weak but long-

ranged attraction@27#. It becomes screened at the polymer
blob size only.

A measure of the tendency of colloidal spheres to disso
in polymeric fluids is given by the chemical potentials
solvation energies. From the compressibility route in analo
to Eq. ~8!, one finds

bdmc
(c)u%c5052E

0

%p
d%p8ĉcp~q50,%p8!u%c50 . ~33!

From the free energy@see Eq.~9!# required to grow the col-
loid particle from a point to its actual size one finds

bdmc
(g)u%c505

pcpsc
3j0

2

2 E
0

1

dz z2gcp
(z) 9~z/2!u%c50 . ~34!

For dilute polymer solutions, wherej5j0, the result from
both routes obeys thermodynamic consistency~up to errors
of 10%! and agrees with field-theoretic results up to 20%
shown in Fig. 4. From the local packing information, E
~34!, an explicit result can be found,

l-
FIG. 3. Colloid pair correlation function,gcc(r ), for two iso-

lated hard spheres in a solution of polymers with size ratioj055
for the denoted polymer concentrationwp . The inset shows as a
solid line the rangew of the depletion attraction estimated b
gcc(r 511w)5

1
2 @11gcc(1)# as a function of the colloid-polyme

interaction lengthl. Curves for various polymer concentration
(wp50.1,1,2,10! overlap, while the size ratioj0 runs between
0.01<j0<100. The dashed line compares the width of the dep
tion layer ingcp(r ) from Fig. 2.
4-9
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bdmc
(g)u%c505

pcpsc
3j0

2

6j2 F11S 61
3

2
l1D S j

sc
D16l1S j

sc
D 2G ,
~35!

which has a number of polymer specific features. For a fl
of small polymers or far into the semidilute regime,j→0,
inserting a colloidal sphere costs the free energy of crea
its volume by doing work against the osmotic pressure of
polymer fluid. For larger polymers, the form of the pol
meric coil enters, and in the limit of very large polym
chains the chemical potential becomes independent ofRg
and scales linearly with the length over which polymer s
ments need to be rearranged, which is just the colloid dia
etersc . As the added sphere sees local strands of the p
mer network only, the result for small spherical colloi
becomes independent of the polymer’s size (Rg) or degree of
polymerization, and also independent of the mesh or b
size. Thus it becomes independent of the polymer molec
concentration@29#,

bdmcu%c50→p%pscl p
2l1 for j→`, ~36!

which holds in the dilute and semidilute region. This res
also quantitatively compares favorably to the known beh
ior in the dilute limit @25#, bdmcu%c50→4p%pscl p

2 . For the
semidilute region, the two routes in Eqs.~33! and ~34! pre-
dict bdmc

(c)u%c50→ 1
3 bdmc

(g)u%c50 and

bdmc
(c)u%c50→

p

6
sc

3bP, bP5
4

3
cpwp

2 for wp→`,

~37!

which explicitly states the connection to the osmotic press
P of the pure polymer system, which is given in the PRIS
approximation for Gaussian polymers in Eq.~37!. Note, that
the extrapolation ofl to finite polymer concentration lead

FIG. 4. Colloid excess chemical potentials at infinite dilutio
bdmcu%c50, in units of (pcp/6) as functions of the polymer to
colloid size ratioj0 for four polymer densities as labeled. The so
lines give the results from long wavelengths, Eq.~33!, the long
dashed line is the result from local packing, Eqs.~34! and ~35!, in
the dilute polymer limit. The short dashed line compares the fie
theoretic result known in the dilute limit@25#. The inset shows the
relative errors in thermodynamic consistency for the four polym
densities.
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to thermodynamic consistency also in these cases~as
claimed at the end of Sec. IV!, as both routes, Eqs.~33! and
~34!, lead to Eq.~36! identically and the results in Eq.~37!
only differ by a numerical prefactor, which could be a
sorbed into a density dependent microscopic lengths̃p(wp).

The mean polymer induced depletion attraction for tw
colloidal spheres can be quantified using the second v
coefficient B2

c , which is accessible experimentally. Repr
sentative results are shown in Fig 5 and demonstrate tha
effective colloidal pair potential depends on the polym
concentration and the polymer to colloid size ratio. For sm
polymers, the result, obtainable from Eq.~19!, simplifies to

B2
c

B2
HS

→12
12wp

112wp
1

3~28l1253!wpj0

4~112 wp!2sc

1••• for j0→0,

~38!

which indicates an appreciable attraction between the
colloids. Note that the third term is positive and predicts
weakening of the attraction when the polymer size starts
grow. Increasing the polymer density strengthens the att
tion, which saturates at a finite negative value. The reliabi
of these results is discussed at the end of this section an
Appendix C where alternative closures are examined.

For very large polymers, again an effective two-collo
attraction is observed.

B2
c

B2
HS

→12
3~21l1!2

2l1
2

wp~j0 /sc!

~112wp!2

2
~24118l113l1

2!wp

2 l1
2~112 wp!

for j0→`. ~39!

As seen in Fig. 5, two hard spheres immersed in a fluid
much larger polymers feel an induced attraction, which v

-

r

FIG. 5. Colloid second virial coefficientB2
c in units of the hard

sphere result,B2
HS52p/3, as a function of the polymer concentra

tion for various size ratiosj0 as labeled. The solid lines present th
results from long wavelengths, Eqs.~19!, ~38! and~39!, the dashed
lines present the results from local packing, Eq.~41!. The curves are
cut in order to prevent overcrowding the figure. The inset shows

semidilute scaling law,b̃2
c(j) from Eq. ~40!, which applies to situ-

ations where the polymer correlation lengthj ~blob or mesh size! is
of the order of the colloid diameter. The solid line again follow
from Eq. ~19! and the dashed one from Eq.~41!.
4-10



in
t

th
ce
ve
ic
e

s
ec
o

fe
n
e
es
ff

er
t

nd
-
n
co
ti
n

e
-
d

llo
a

n
ly
a
tly
he
tic
th
he

r
io
o

m
t

e

ed

-

the

es
hes
ns
-
ol-

in
or-
be

he
en-

d
ith

ly-

q.
se

l
ily

in-
as

this
e-

lloi-
red

ed

e
er

of
n-

lu-
or
of

ge
s
hen
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ies nonmonotonically with polymer concentration and
creases with polymer size as previously found based on
l50 PY closure@40#. Its origin is purely entropic as the
added particles hinder conformational fluctuations of
polymer strand they are embedded in. For large distan
the conformational entropy loss at both particles is additi
For shorter distances, however, chain connectivity restr
the conformational fluctuations of a polymer molecule ev
without added particles. Thus the additional entropy los
smaller if the two particles are close. This induces an eff
tive long-ranged attraction among the colloidal particles. F
small concentrations, adding polymer strengthens the ef
tive attraction. Around the dilute-semidilute crossover de
sity, however, the effective range of the polymer induc
attraction crosses over from the polymer size to the m
size and thus starts to decrease appreciably. The latter e
dominates in the semidilute concentration region and th
fore B2

c decreases again. It is important to mention tha
mean-field approach@53# employing a RPA, wherej
;1/A%p, would be too crude to handle this competition a
would miss the increase ofB2

c above the overlap concentra
tion. Apparently, a simple superposition approximatio
which decouples the depletion layers around each of the
loid spheres, misses the long-ranged, but weak, attrac
@54#. The minimum value ofB2

c for the considered Gaussia
polymer statistics is 2@3(21l1)2/16l1

2#(j0 /sc)'
20.17(Rg /Rc), which is asymptotically deeper than th
value20.50(Rg /Rc)

0.40 for self-avoiding-walk polymer sta
tistics @29#. The more swollen polymer molecules in goo
solvents apparently are more open to the particles and a
stronger interpenetration so that the induced colloid attr
tion is smaller@27,55#.

Deep in the semidilute density region,wp→`, the second
virial coefficient again saturates,B2

c/B2
HS→25, indicating a

finite effect of the pairwise attraction, which is independe
of the size ratio. This limit corresponds to a vanishing
small polymer blob size. Yet, for large polymers there c
open up a window, where adding polymer only sligh
changesB2

c in a manner that is much weaker than at t
overlap concentration but still differs from the asympto
value. This is the polymer concentration range where
polymer mesh width is not yet negligible compared to t
particle size and there a broad maximum develops,

B2
c

B2
HS

→b̃2
c~j! for wp→`, j0→` with j5const.

~40!

The scaling functionb̃2
c is shown in the inset of Fig. 5. Fo

semidilute polymer concentrations, the depletion attract
among two colloidal spheres depends nonmonotonically
the ratio of the blob to the sphere size. There is an opti
blob size that roughly equals the sphere radius, where
induced attraction is minimal orB2

c is maximal. This makes
physical sense since forsc/2'j the particles can ‘‘just fit
in’’ the polymer mesh spaces without distorting it. For larg
polymer correlation lengths, the crossover to Eq.~39! sets in
because the range of attraction increases. Unexpect
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however, also for smallerj, B2
c becomes more negative, pre

sumably because the depth of the attraction increases.
There does exist a caveat for the above results on

colloid-colloid interactions@7,9,35,40#. Liquid state theory
~and also@4#! with PY-closure, density functional approach
to the colloid structure, and free energy based approac
@5#, all underestimate the depletion attraction in situatio
where it far exceedskBT. This error, which presumably af
fects the results for dilute colloidal particles in a dense s
vent of small polymers,fc→0, j0!sc , andwp@1, arises
from an inherent linearization of the depletion potential
the considered binary-mixture approach. Therefore it is f
tunate that a thermodynamic consistency condition can
formulated explicitly addressing the accuracy with which t
depletion attraction is handled. There exists another indep
dent expression forB2

c , which follows from Eqs.~9! and
~14! and the definition~19!,

B2
c

B2
HS

53F E
0

1

dz z2gcc
(z)~z!1

wp

48j0
E

0

1

dz z5
]gcp

(z) 9~z/2!

]fc

2
wpj2

32j0
S E

0

1

dz z2gcp
(z) 9~z/2! D 2G

%c50

. ~41!

This result follows from the local packing information an
shows a very different and unphysical scaling compared w
the result from large wavelength fluctuations for small po
mer and/or high polymer concentrations,B2

c(g)/B2
HS

→ 1
24 (wp /j0)3. This throws severe doubts on the result in E

~38! and on our treatment of the depletion attraction in the
two cases,j0→0 or wp→`, where from a pair potentia
point of view the depletion attraction should be arbitrar
large. Thusm-PY PRISM with the PY closure for colloid-
colloid correlations apparently cannot capture the strong
duced attraction in these two limits of theoretical interest
has been pointed out previously@35,40#. As the second virial
coefficient can be considered a worst case example of
failure, Appendix C examines this issue using different th
oretical approaches. Reassuringly, the results for the co
dal second virial coefficient for large polymers are recove
semiquantitatively from the two routes withinm-PY PRISM.
The scaling in the limit of very large polymers is recover
exactly, i.e., the term diverging linearly withj0 in Eq. ~39!.
Equation~41! also predicts that a scaling law exists for th
second virial coefficient of colloidal particles in a polym
mesh, which semiquantitatively compares with the one
Eq. ~40!, see Fig. 5. Intriguingly it also shows the nonmo
tonic behavior ofB̃2

c(j) for intermediatej.

VI. RESULTS FOR POLYMERS DILUTED IN A HARD
SPHERE FLUID

While numerous field-theoretic results for polymer so
tions exist, including for the question of dissolving one
two particles in dilute solutions, and could serve for tests
the m-PY results in the previous section, to our knowled
little is known about the packing of dilute polymer chain
into dense particle fluids. The case of present interest is w
4-11



th
n
um
e

he
im

oly

e
th
ab

ze
is
tl
pl
b
r
e

oly-
n-
sity
ong

e

nt

-

ize.
ly-

lds
,

less
x-

tio n,

e

of
ef.

M. FUCHS AND K. S. SCHWEIZER PHYSICAL REVIEW E64 021514
the particles are much larger than the repeat units of
polymer chain, and both components are immersed i
small molecule background solvent treated as a continu
If the amount of added nonabsorbing polymer is small, th
the structure of the colloidal fluid is not changed. In t
present treatment it is given by the reliable and easily
proved PY-theory description.

Whereas the segmental depletion layer of a single p
mer ~or a semidilute solution! around a single~spherical!
particle exhibits a monotonic dependence on the distanc
the surface of the particle, adding further particles forces
polymer to squeeze into the open spaces. Thus the prob
ity of finding polymer segments at a distancer from the
center of a colloidal particle,gcp(r ), develops an oscillatory
structure whose period is correlated with the colloidal si
In Fig. 6 the evolving layering of the segment density
shown. For high particle densities, the polymers pack tigh
into the voids and thus are close to the particles. The de
tion layer, even though present, in principle, is restricted
the colloid spacing and varies with external paramete
Thus, the assumption of an effective pair potential becom

FIG. 6. Polymer-colloid pair correlation functiongcp(r ) for a
polymer added to a hard sphere solution; colloid packing frac
fc and size ratioj0 as labeled. The inset shows the widthw of the
depletion layer@defined asgcp(r 5

1
2 1w)5

1
2 # versus the interaction

rangel for the labeled colloid packing fractionsfc . The curves are
parametrized by the size ratioj0, which varies as 0.01<j0<100
with increasingw andl.
e

n
ot
m
t f
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inappropriate, because it requires that the range of the p
mer induced colloid-colloid potential, which naturally is co
nected to the depletion layer, itself becomes particle den
dependent. The inset of Fig. 6 shows that there is a str
correlation of the colloid-polymer interaction rangel to the
width in the depletion layer. While varying the polymer siz
by four orders of magnitude, neither the width norl change
as strongly. Moreover, for somewhat higher colloid solve
concentrations the width becomes a unique function ofl,
which only mildly splays out iffc is decreased. Both quan
tities furthermore arrest at finite values in the limit ofj0
→`, since the relevant length scale is then the colloid s

If the solvation free energy for adding nonadsorbing po
mers to a fluid of spheres is considered, Eqs.~8! and ~10!,
then the ideal gas limit result discussed in Sec. IV only ho
for point polymers,j0→0. As expected and shown in Fig. 7
it becomes more difficult to add larger polymers because
free volume is available for them. The compressibility e
pression, Eq.~8!, can be integrated analytically yielding

n FIG. 7. Polymer excess chemical potentials at infinite dilutio
dmpu%p50 @in units of 1/(Nb)#, as functions of the colloid packing
fraction for four size ratiosj0 as labeled. The solid lines give th
results from long wavelengths, Eq.~8!, the long dashed lines the
corresponding ones from local packing, Eq.~10!. The short dashed
lines compare the equivalent PY results for inserting a sphere
radius equal toRg as used in the phantom sphere approach of R
@5#.
Nbdmp
(c)u%p5052 ln~12fc!1

6fcj0S 11
4

l1
D

sc~12fc!
1

6fcj0
2~21fc!S 11

2

l1
D

sc
2~12fc!

2
1

6fcj0S 4

l1
2

2
2

l1
D Y sc

S 11l1

j0

sc
D F11l1

j0

sc
2fcS 122l1

j0

sc
D G ,

~42!
par-
-
he
which was compared to the virial route in Fig. 1. For larg
polymer coils, the added macromolecule loses conform
tional entropy when squeezing into the fluid interstitials a
thus the free energy cost increases. Yet, its increase is n
rapid as if the polymer was a sphere because the poly
chain can rearrange. This becomes especially importan
r
a-
d
as
er
or

large polymers because they can wrap around the fluid
ticles. Therefore, if Eq.~42! is compared with the corre
sponding result from scaled particle or PY theory for t
addition of spheres with sizeRg to a sphere fluid@5#, then
two qualitative differences appear for largeRg@sc . First,
only a quadratic scaling with the polymer size results,
4-12
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bdmp
(c)u%p50→

6fc~21fc!S 11
2

l1
D

~12fc!
2

j0
2

Nsc
2

for j0→`,

~43!

whereas for~large! added spheres the chemical potent
scales with the volume of the added species. The behavio
Eq. ~43! is connected to the large-j scaling of the chemica
potential for adding spheres to a polymer solution, discus
in Eqs.~36! and~37!, because both quantities are determin
from the polymers’ ability to deform around a particle. In E
~43! this explains why the right-hand side~rhs! becomes in-
dependent of the degree of polymerization and linearly
pendent on the colloid size. Second, the increase with
ticle fluid density is weaker than the corresponding sph
mixture result, which would predict a cubic divergence f
fc→1. Thus the difference of both approaches becom
more important at higher sphere concentrations. Note tha
free volume expression used in Ref.@5# is connected to
dmpu%p50 via a5Vf /V5e2Nbdmpu%p50. The input to this ap-
proach, the chemical potential for adding a sphere of rad
Rg to a hard sphere solution, is included in Fig. 7, and
large polymers strongly overestimates the free energy
for insertion.

The pressure exerted by the particle fluid on the polym
also manifests itself in the dilute limit intermolecular pac
ing of the segments of two polymers, which is described
gpp(r ) for wp→0; examples are shown in Fig. 8. Th
potential-of-mean force between segments is given
2kBT ln gpp(r), while its polymer molecule analog is of th
order ofN2 times larger. The slight repulsion of polymers
solution that causes the correlation hole is overcome at
distance connected to the depletion layer ingcp , as seen by
comparison with Fig. 6. For larger distances the polym
segments are pushed together and therefore pack m
densely than random. For small polymers an oscillatory p
tern develops connected to the distance of voids between

FIG. 8. Polymer-polymer pair correlation functiongpp(r ) for
dilute polymer molecules immersed in a hard sphere solution;
colloid packing fractionsfc and size ratiosj0 are the same as in
Fig. 6 and as labeled (fc50.5 for j05 0.1 and 1!. The thin lines
present the asymptote for large polymers, Eq.~44!, evaluated for
j055 and 1 atfc50.5, while the inset shows the intermolecul
polymer segment contact valuef (fc), which determines this
asymptote.
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particles. For larger polymers, this segmental layering
smeared out and after an initial risegpp(r ) monotonically
decays to its random value. In the limit where the partic
are much smaller than the two polymeric molecules, but
course still much larger than the segmental repeat unit s
the two polymers entwine strongly. Forj0@1 andwp→0,

gpp~r !→11@ f ~fc!21#e2r /j0,

where

f ~fc!5
fc~6l11124fc!

2~12fc!~112fc!
~44!

follows from Eqs.~21! and ~25!. Within the coil radius, for
r<j0, the distribution of segments from two chains is almo
constant and does not exhibit the self-similar power-law
havior, 1/r , of open~Gaussian! fractals. Only for distances
larger than the coil size,r .j0, does the intermolecular seg
ment distribution decay to uncorrelated packing. The pr
ability of segments of different polymer chains to be clos
as measured by the pair correlation function contact va
f `(fc), is determined by the particle packing fraction, a
for fc>0.11 becomes~much! higher than the bulk density
This increase is a precursor of the demixing transition
finite polymer concentrations@35#. For fc'0.5, the density
of segments from other chains within aRg distance of a
tagged segment is more than an order of magnitude gre
than in the absence of colloids. This may have signific
consequences for intermolecular processes such as che
reactions or energy transfer between polymers added a
lute levels to colloidal suspensions or porous materials.

The intermolecular excluded volume parameter, defin
asvp

excl(fc)52 ĉpp(0), or therelated polymer molecule sec
ond virial coefficientB2

p determine the importance of th
excluded volume interaction on the polymer packing on lo
and macromolecular distances, respectively. Results
shown in Fig. 9. On local distances, it appears plausible

e
FIG. 9. Normalized polymer second virial coefficientB2

P*
5B2

p/(4pj0
3) as a function of the colloid packing fraction for var

ous size ratiosj0 as labeled. The inset shows the normaliz
polymer intermolecular excluded volume parametervp*
5vp

exclj0 /(8p l p
4) as a function of the polymer sizej0 and the~in-

distinguishable! approximation Eq.~45!; for the inset, the colloid
packing fraction isfc50.2.
4-13
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a polymer chain should experience the identical steric re
sion from a segment of its own backbone as from anothe
the chemically identical macromolecules. Thus, the resul
Eq. ~26! can be used to discuss the effective excluded v
ume parameter induced by the depletant particles. For v
ishing colloid concentration, wherevp

excl andB2
p are directly

related, the interpretation of polymer chains as repuls
spheres is recovered in PRISM becausevp

excl(fc)}1/Rg and
thereforeB2

p}Rg
3 . Note, that our present model thus does n

describeQ solvents, whereB2
p50, even though a Gaussia

intramolecular structure was assumeda priori, but rather de-
scribes polymers in athermal solutions with the techni
simplification to treat the polymer chains as random wal
For results with self-avoiding statistics, see, e.g., Re
@48,56#. The result in Eq.~26!, which to a very good approxi
mation simplifies to
or
d
te
te
it

er
e

re
r
u
la
el
e

ar
ox
ris
d
la
tio
c
n

in
th

02151
l-
of
n
l-
n-

e

t

l
.
.

vp
excl~fc!5

8p l p
4

j0
S 1

12fc
1

3~21l1!2

l1
2

fcj0 /sc

~12fc!
2D ,

~45!

indicates that the effective local segmental interaction st
repulsive for all size ratios and particle fluid concentratio
Asymptotically for small depletant particles, it becomes
dependent of the macromolecular size and saturates
positive value that increases withfc . This is found even
though, mesoscopically, two polymers are induced to in
twine, and for somewhat higher polymer concentratio
phase separation into a polymer gas and polymer fluid ph
sets in @35#. At macromolecular distances, the effectiv
polymer-polymer molecule interaction can become very
tractive if the particle density is high or the colloidal pa
ticles are large,
B2
p→5

2
psc

3

12 F ~12fc!
2fc

~112fc!
2

1
24fc~12fc!

~112fc!
2

j0

sc
G for j0→0

4pj0
3

~112fc!
F 12

36fc

~12fc!

11l11
1

3
l1

2

l1
3

G for j0→`.

~46!
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For small polymers, the result known from PY theory f
hard sphere mixtures is recovered. It is negative and
scribes the tendency of the polymer point particles to clus
Increasing the polymer size somewhat increases this
dency. For large polymers, however, a finite colloid dens
is required in order for the colloid induced attraction to ov
whelm the segmental repulsion. The virial coeficient b
comes negative only forf>0.108 . . . for j0@1.

VII. CONCLUSIONS

We have studied athermal colloid and polymer mixtu
and considered the dilute limit of one species using a bina
mixture approach, which treats the hard spheres and Ga
ian polymer coils on an equal footing. The macromolecu
liquid state theory uniquely addresses the structural corr
tions over the wide range of length scales from the polym
repeat unit size to the molecular sizes. Packing of h
spheres is handled using the reliable Percus-Yevick appr
mation. Polymer specific effects are captured, which a
from the ability of the polymer coils to deform close to an
around the particles. Also, the appropriate polymer corre
tion length appears in the description because the forma
of a polymer mesh is captured. The polymer specific effe
become important as soon as the size of the coils is
negligible relative to the colloid radius.

The comparison of them-PY approximation with rigorous
field-theoretic results in the dilute colloid limit presented
Sec. V serves to validate our approach, which offers
e-
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y
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r
a-
r
d
i-
e

-
n
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e

unique possibility of extension to higher densities. Intere
ing predictions arise for the colloid induced pair interacti
of dilute polymers, which are much larger than the particl
Strong interpenetration is predicted~see Fig. 8! finally lead-
ing to fluid-fluid phase separation@35#.

In this context it is important to stress that the approxim
tion of Gaussian single-chain correlations is done for pur
technical reasons in order to achieve analytical results.
course this entails that the majority of the scaling predictio
derived in the present and previous work@35# bears the
wrong exponents if applied to polymers in a good solve
Intramolecular excluded volume, thermal attractions, an
self-consistent determination ofv(q) will be included in fu-
ture numerical studies, and in a number of cases the
rected scaling predictions have already been pointed
@35,48,56#.

Colloidal dispersions containing added free polymer
often described by integrating out the polymer degrees
freedom in order to derive an effective colloidal Hamiltonia
@7#. However, for interacting polymers there exists no sm
parameter, and the induced many-particle interactions am
the colloids do not generally terminate at a pairwise desc
tion, and the polymer density dependence of the parame
in the effective interactions cannot be neglected. Both
sumptions enter the description of polymer-colloid mixtur
using effective pair potentials like the Asakura-Osawa mo
@1,4#, and are justified only for low concentrations of pol
mers much smaller than the colloid particles, and preferra
dissolved inQ solvents that mimimize the excluded volum
4-14
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MACROMOLECULAR THEORY OF SOLVATION AND . . . PHYSICAL REVIEW E64 021514
interaction. The discussion of semidilute polymer solutio
in Sec. V clearly identifies the importance of the dens
dependent polymer blob size or mesh width, which also
pears inQ solvents@44#. The importance of induced many
body interactions, which naturally are contained in the p
sented binary mixture approach, was discussed in R
@6,35#. Treatments of binary mixtures of spheres have b
used to describe the colloid-polymer mixtures, replacing
polymer coils by spheres of equal or similar size and negl
ing their direct interactions~‘‘phantom sphere models’’!
@5,8#. These capture induced many-body interactions but
glect the deformability of polymers around particles and
crossover of the relevant polymer length scale from the
size to the blob size when reaching semidilute concen
tions. Whereas these effects had been well appreciated w
adding dilute particles to polymer solutions, their study
concentrated particle solutions in the present appro
clearly reveals their importance whenever the size of
polymer coils is not negligible. Their description in rece
‘‘soft-colloid’’ approches to polymers is yet unclear@57,58#.
An interesting quantity in this context is the free energy c
for adding polymers to hard sphere fluids because this is
central input for the widely used free volume theory
Lekkerkerkeret al. @5#. As Fig. 7 shows polymer deformabi
ity leads to strong deviations compared to results based
replacing polymer coils by hard spheres.

A central ingredient of the present approach consists
enforcing thermodynamic consistency for the polymer ins
tion chemical potentialdmpu%p50. The length scalel over
which polymer segments are allowed to rearrange clos
the particles is determined from equating expressions
dmp from long wavelength and from local packing inform
tion. Although the latter compares favorably with exact
sults for dilute systems, quantitatively we consider t
former coarse-grained approach~‘‘compressibility route’’! to
be more reliable, and also preferentially use it for other th
modynamic quantities within the present approach. Our r
soning rests on three observations.

~i! The used scaling law approach~thread model! to se-
midilute polymer solutions is coarse graineda priori, so a
zero wave vector thermodynamic route is natural. Recent
has been connected to a self-consistent Gaussian field th
@59#.

~ii ! The compressibility route leads to thermodynamic
sults far less dependent on the specific closure as can be
by comparing the presentm-PY with previous PY results
@20,40,41#.

~iii ! In a microscopic calculation the universality, in field
theoretic sense, of the long wavelength structure could
shown explicitly @47#, in contrast with the local structur
route where microscopic parameters remained as prefac
In the present context this implies that a full PRISM calc
lation could lead to a local matching length in Eq.~29! de-
pendent on the excluded volume size. Thermodynamic c
sistency, nevertheless, should prove a useful concept als
the description of other systems, like polyelectrolyte m
tures @52#, where PRISM-based numerical approaches h
already given interesting results.
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APPENDIX A: FACTORIZATION OF THE INTEGRAL
EQUATIONS

Three-dimensional Fourier transformations leading
f̂ (q) of functions f (r ) depending on the radiusr only shall
be simplified to one-dimensional ones as follows:

f̂ ~q!52pE
2`

`

dr eiqr f̃ ~r !, where

f̃ ~r !5E
ur u

`

ds s f~s!. ~A1!

1. The limit fc\0

Inserting Eq.~12!, the first equation of Eqs.~14! becomes

ĥ125j2
ĉ̄12

s

~11l2q2!~11j2q2!
, ~A2!

which suggests an ansatz forc̄s of the form

ĉ̄12
s ~q!52pe2 iq/2~ua1 ilqva!1~11 iql!~11 iqj!q̂12~q!.

~A3!

This shifts the problem of findingc̄12
s (r ) for 2 1

2 <r< 1
2 to

the problem of finding the~Wiener-Hopf factor! function
q12(r ), where

q̂12~q!52pE
21/2

1/2

dr eiqrq12~r !, ~A4!

and q12(r )50 elsewhere. From the required symmet

ĉ̄12
s (q)5 ĉ̄12

s (2q), and Eq.~A3!, follows the continuity of
q12 at the upper boundary,

q12S 1

2D50. ~A5!

Inserting Eq.~A3! into Eq. ~A2! leads to

~12 iql!~12 iqj!ĥ12~q!2j2q̂12~q!

5
2pj2e2 iq/2~ua1 ilqva!

~11 iql!~11 iqj!
, ~A6!

where by simple inspection the right-hand side has no pol
the lower complexq plane, Iq,0. Thus for r .2 1

2 the
4-15
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Fourier-back transform of Eq.~A6!, remembering Eq.~A1!,
can be performed and leads to

~11l] r !~11j] r !h̃12~r !5j2q12~r ! for r .2
1

2
.

~A7!

For r> 1
2 , this leads to Eq.~15! and in the overlap region, th

excluded volume condition gives

r 1l1j5j2q128 ~r ! for 2
1

2
,r ,

1

2
, ~A8!

which can easily be integrated using Eq.~A5! and provides
the initial condition for the derivatives off 12 at r 5 1

2 men-
tioned in the main text. Also the zero wave vector value
the direct correlation function in Eq.~16! follows from Eq.

~A3! and the symmetry requirement onĉ̄s, which fix

ua52
j212lj~11j!1l2~112j!

j2
, va52

j1l

j
.

~A9!

Inserting the ansatz~A3! at 2q into the second equation o
Eq. ~14! leads to

ĥ222 ĉ225
ĥ12~q!wp

2pj0
S 2peiq/2~ua2 ilqva!

11l2q2

1
~12 iqj!q̂12~2q!

~11 iql! D , ~A10!

where Eq.~A6! shows that the last term on the rhs has
pole for Iq,0 except for a single pole atq52 i /l. Intro-
ducing the constants

z5
l~ua1va!

2~l1j!
, u5z2ua , and v52

j

l
z,

~A11!

also the first term on the rhs of Eq.~A10! can be decompose
into poles and zeros in different half planes. On the left-ha
side of Eq.~A10!, asc22(r ) vanishes forr .1, its factoriza-
tion can be achieved using a constantw and an undetermined
function q22(r ), which vanishes outside the range 0<r<1,
and whose Fourier transform is given by

q̂22~q!52pE
0

1

dr eiqrq22~r !. ~A12!

Respecting thatĉ22 is a symmetric function ofq, the follow-
ing ansatz is required:
02151
f

d

ĉ22~q!5
2pw

11l2q2
1

q̂22~q!

12 ilq
1

q̂22~2q!

11 ilq
2

wpj2

2pj0

3
@ q̂12~q!12pze2 iq/2#@ q̂12~2q!12pzeiq/2#

11l2q2
,

~A13!

where the requirement of absence of a term of the form 1q2

for q→`, which would correspond to a divergencec22(r
→0);1/r , determines the constantw from the value ofq22
at r 50,

w

2l
5q22~0!1

wpj2

2lj0
z2. ~A14!

The ansatz Eq.~A13! is useful because it cancels a numb
of the poles in the lower complexq half plane in Eq.~A10!.
The required short range of the direct correlation functio
c22(r .1)50, however, at first sight is violated by Eq
~A13!, which appears to indicate an exponential ta
rc22(r )5const3e2ur u/l for ur u.1. Requiring its prefactor to
be zero, i.e., requiring the residues of the rhs of Eq.~A13! at
q56 i /l to vanish, fixes the initial value of the factor func
tion,

q22~0!5
21

l E
0

1

dr er /lq22~r !

1
wpj2

8p2lj0

@ q̂12~2 i /l!q̂12~ i /l!

12pze1/(2l)q̂12~2 i /l!12pze21/(2l)q̂12~ i /l!#,

~A15!

which is a linear equation inq22(0). Unfortunately, the full
expression forq22(0) turns out rather complicated and on
simplifies if the fact thatl!1 holds is recalled in order to
neglect corrections of the orderO(e21/l).

The factorization ofĉ22 expressed in Eq.~A13! simplifies
the Fourier-back transformation of Eq.~A10!, as the poles in
the lower complexq plane were identified with Eqs.~A11!
and~A13!. Thus forr .0 one finds after Fourier-back trans
forming that

~11l] r !h̃22~r !1
wp

j0
~u1vl] r !h̃12~r 2 1

2 !5q22~r !

~A16!

holds, which proves Eq.~17! and, together with Eq.~A15!,
also proves Eq.~18! becauseg22(1)5q22(1)/l. In the over-
lap region, it leads to

q228 ~r !5r 1l1
wp

j0
S ur2

u

2
1vl D for 0,r ,1.

~A17!
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The changes in the contact value upon adding more collo
particles, i.e., (]gcp /]%c)u%c50, can be determined in an ex
plicit form from the Wiener-Hopf factorization of the ful
nonlinear equations@60#.

2. The limit wp\0

For wp→0, the colloid structure factor agrees with the P
solution for hard spheres, which can be written in terms
Baxter’s factorization function as@42#

Ŝ̄22
215@12q̂22~2q!#@12q̂22~q!#, where

q̂22~q!52pE
0

1

dr q22~r !eiqr

52pE
0

1

drS A

2
~r 221!1B~r 21! Deiqr ~A18!

with the coefficientsA5%2@(112fc) /(12fc)
2# and B

5%2@23fc/„2/(12fc)
2
…#. The first equation of Eqs.~20!

can be simplified with the ansatz

ĉ̄12
s ~q!5~11 iqj0!~11 iql!q̂12~q!

1e2 iq/2@12q̂22~q!#2p~ub1 iqlvb!, ~A19!

as from Baxter’s solution it is known that@12q̂22(q)#@1
1%2ĥ22(q)# has no poles forIq,0. The functionq12(r )
again is assumed to vanish outside the overlap region s
that Eq.~A4! holds. The required symmetry ofĉ12(q) and
the known properties ofq22 further show that Eq.~A5! holds
and that vb5j0q12(2 1

2 ) and ub522pq22(0)lvb1vb(1
12l1l/j0). Inserting Eq.~A19! into Eq. ~20! and closing
the Fourier integrals in the lower complexq half plane thus
leads forr .2 1

2 to

~11j0] r !~11l] r !h̃12~r !

5j0
2q12~r !112fcj0

2E
21/2

1/2

ds q12~s!h̃22~r 2s!.

~A20!

This leads to Eq.~21! for r . 1
2 as f i j (r )52] r h̃i j (r ) for r

.0. Within the overlap region, the equation determiningq12
follows:

r 1j01l5j0
2q128 ~r !112fcj0

2E
21/2

1/2

ds q12~s!~r 2s!,

~A21!

which is solved by the result given in Eq.~23! with param-
eters

a5
12fc~126l26j0!

~12fc!
2j0

2
, b5

l1j0

~12fc!j0
2

. ~A22!
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From the discontinuity ofq128 at r 5 1
2 , the initial condition

~22! results. Solving for the parameters

ub52
~l1j0!$j02fj01l@112j02f~124j0!#%

~12f!2j0
2

,

vb5
l1j0

2j01fj0
, ~A23!

one can obtain Eq.~24! from Eq.~A19!. The second equation
of Eqs.~20! can be rewritten upon insertion of Eq.~A19!,

ĥ112
j0

4

~11q2j0
2!2

ĉ11

l p
4

5
6fcj0

2

p

ĥ12~q!

~12 iql!~12 iqj0!

3S q̂12~q!1
2pe2 iq/2@12q̂22~q!#~ub1 iqlvb!

~11 iql!~11 iqj0!
D .

~A24!

Considering the explicit expression forĥ12(q) from Eqs.
~20!, ~A18! and ~A19!,

ĥ12~q!5ĥ12~2q!

5
j0

2q̂12~2q!

@12q̂22~2q!#@12q̂22~q!#~11 iql!~11 iqj0!

1
2pj0

2eiq/2~ub2 iqlvb!

@12q̂22~q!#~11q2l2!~11q2j0
2!

, ~A25!

one recognizes that the first term of Eq.~A25! multiplied
with @12q̂22(q)# contributes no poles in the lowerq half
plane. Thus the poles forIq,0, which are the only ones
contributing forr .0, from the second part of Eq.~A24! can
be identified and characterized with parameters

zl5
3fcj0

4l

~l2j0!~l1j0!2
~ub

22vb
2!,

z̄j0
5

3fcj0
3

~l2j0!~l1j0!2
~l2vb

22ub
2j0

2!, ~A26!

and zj0
5 z̄j0

2 ĉ11j0(l2j0)/8p l p
4 . From Eq. ~A24!, then,

Eq. ~25! follows by transformation and differentiation. Th
last unknown quantity,ĉ11(q50), can be obtained from Eq
~A24! because the rhs vanishes as cos2(q/2)/q8 for q→`, as
can be seen from Eqs.~20! and~A20!. Therefore, the discon
tinuity of the third derivative atr 50 of the transform of
vq

2ĉ11 needs to be balanced byĉ11,
4-17
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] r
3h̃11~r !ur 5052] r

2f 11~r !ur 505
ĉ11~0!

4p l p
4

, ~A27!

which together with Eq.~25! fixes the polymer excluded vol
ume parameter as given in Eq.~26!.

The change in the colloid-contact value upon adding po
mers, (]gcc /]%p)u%p50, can be obtained from the equation
at finite density and leads to a rather unwieldy express
@60#. For this work, only its limits are required
(]gcc /]%p)u%p505O(j0

2) for small j0, and when terms of

O(l2) are neglected

]gcc~1!

]wp
U
%p50

→ 1/~2j0!

~12fc!
2

1
2l

j0

112fc

~12fc!
3

for j0→`.

~A28!

APPENDIX B: STEPS IN THE DETERMINATION OF l

In the limit j0@1 one can use the physically motivate
expectation thatl becomes small compared toj0 and is of
the order of the colloid diameter. With the ansatzl
5L(fc) for j0→`, the expressions in Eqs.~22! and ~24!
simplify. With Eq. ~A28!, which entails a further expansio
in L,1 up to linear order, the contact route expression
~10! becomes

Nbdmp
(g)u%p50→2j0

2fc
2/3E

0

fc
dx

112x

L~x!x2/3~12x!2

124j0
2fc

2/3E
0

fc
dx x1/3F 1/2

~12x!2

12S x

fc
D 1/3

L~x!
112x

~12x!3G . ~B1!

By multiplication with powers offc
1/3 and differentiation,

this expression can easily be turned into an ordinary dif
ential equation forL(fc), whose asymptotic solutions ar
given in Eq.~30!.

APPENDIX C: COMPARISON OF B2
c FROM OTHER

CLOSURES

The failure of thermodynamic consistency in the collo
second virial coefficientB2

c for situations where the effectiv
colloid pair potential is strong warrants a comparison w
results obtained with other closures. Because of previ
polymer-colloid mixture work in Refs.@40,41# we consider
two alternative approximations: the PY closure for t
02151
-

n

.

r-

s

colloid-polymer interaction, which corresponds tol50, and
the HNC closure@61# or for the colloid correlations. Study o
the latter is motivated by the known deficiencies of the P
closure for mixtures of hard spheres, which are~partially!
corrected by the HNC closure@61#.

The result for the colloid pair correlation function usin
the HNC closure can easily be obtained from them-PY re-
sult via @40#

gcc
HNC~r !5egcc

m-PY(r )21 for r .sc . ~C1!

Becausegcc
m-PY(r )21 and the connected quantitybW(q)

5%pccp
2 (q)Spp(q) in Eq. ~14! can be identified as~Fourier

transform of! the polymer induced potential@62#, the HNC
closure agrees with the exact virial expression for colloi
spheres interacting with this~effective! pair potential and the
sc /Rg→` blob scaling mean-field results@30#. From Fig.
10 one deduces that, as discussed in Sec. V, them-PY results
are not reliable forsc@j ~i.e., small size ratiosj0 or higher
polymer concentrations! because the linearization in Eq
~C1! underestimates the strong attraction in these cases.
larger polymers, however, in agreement with the consid
ation of thermodynamic consistency in Sec. V, the PY line
ization of Eq. ~C1! is qualitatively and even quantitativel
appropriate. The minimum inB2

c at the overlap concentra
tion, as well as the semidilute scaling law, are present in
HNC ~andl50, PY @40#! results also. The closer quantita
tive agreement of the HNC results forB2

c with the
compressibility-route results withinm-PY is one of the
prime reasons we favor this route Eq.~19!, over the virial-
type route, Eq.~41!.

FIG. 10. Colloid second virial coefficientB2
c in units of 2p/3 as

a function of the polymer concentration for various size ratiosj0 as
labeled. The solid lines are the compressibility results from Fig
whereas the dashed lines give the corresponding HNC results.
inset presents the latter in a larger window, showing their drop
large negative values for polymer concentrations far above the o
lap one.
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